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S1. Details of the calculation and settings

The IFCs are derived through the following procedures. First, an irreducible displacement set is
generated based on a real space supercell. For each displacement configuration, the Hellmann-Feynman
forces on atoms were calculated by density functional theory using Quantum ESPRESSO package [1,2].
Then the IFCs are extracted by fitting the prepared displacement-force sets using the ALAMODE
package [3]. We used projector-augmented wave pseudopotentials under local density approximation for
density functional theory calculations [4]. The convergence threshold for self-consistency is 10711, The
kinetic energy cutoff for electronic wavefunctions is 120 Ry for R3m-BNC,, 80 Ry for Pmm2-BNC; and

P4m2-BNC3, 100 Ry for BPC, and BAsC., and 120 Ry for BAs and Si, respectively. The primitive cell
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of all the calculated BXC> has four atoms. The Monkhorst-Pack grids for structure optimization on
primitive cells are 12 x 12 x 12 for BNC», 18 x 18 x 18 for BPC, and BAsC», and 6 x 6 x 6 for BAs
and Si, respectively. All the parameters for the density functional theory calculations has been carefully

checked to make the uncertainty of the forces acting on each atoms less than 10 Ry/au.

The convergence of thermal conductivity versus all the setting parameters, including the cutoff
radius for 3 and 4™ order IFCs, supercell size, and g-mesh has been carefully checked and verified. For
Pmm2 and P4m2 phase ternary boron compounds, the 2"-order IFCs are calculated based on a 256
atoms supercell, and the 3™-order IFCs are calculated based on a 108 atoms supercell. For R3m phase
ternary boron compounds, the 2"-order IFCs are calculated based on a 192 atoms supercell, and the 3'-
order IFCs are calculated based on a 108 atoms supercell. For BAs and Si, the IFCs are calculated based
on a 216 atoms supercell. The Monkhorst-Pack grids for supercells are 4 X 4 x 4 for BNC2, 6 X 6 X 6
for BPC, and BAsC», and 2 x 2 x 2 for BAs and Si, respectively. The cut-off radius for 3"-order IFCs
are 6.8 bohr for ternary boron compounds. The cut-off radius for 4"-order IFCs is 3.0 bohr for Pmm2-
BNC; and 4.7 bohr for R3m-BNCx, respectively. For BAs, the 3-order and 4"-order IFCs include up to
fifth nearest neighboring atoms and second nearest neighboring atoms, respectively. For Si, the 3"-order
IFCs include up to fifth nearest neighboring. The dipole-dipole interaction is considered by adding a
non-analytical term to the dynamical matrix [5]. A tetrahedron method is applied here for the integration
over Brillouin Zone [6], which makes the g-mesh for solving the Boltzmann transport equation
converged at a relatively small mesh density compared with smearing method. The g-mesh for solving
the Boltzmann transport equation is 12 x 12 x 12 for R3m-BNC,, 8 X 8 x 8 for Pmm2-BNC, 12 X

12 x 12 for P4m2-BNCy, 14 x 14 x 14 for BPC, and BAsC, and 18 x 18 x 18 for BAs.



S2. Theoretical details and solution of phonon Boltzmann equation with three-phonon and four-

phonon scatterings

The phonon Boltzmann transport equation is given as,
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where 1 = (q, p) labels a phonon mode with wave vector q and polarization p. v, is the group velocity of

phonon mode A, and n, is the non-equilibrium phonon distribution function. The scattering term

] . .
(ﬂ) describes the change rate of n; due to phonon scatterings, and can be treated as the
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summation of different phonon scattering processes,
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(ﬂ) and (ﬂ) represent the change rate of n; due to three-phonon and four-phonon scatterings
ot 3ph at 4ph

respectively. In our calculation, we noticed that considering four-phonon scatterings dramatically increases

the computational cost. Based on Fermi’s golden rule [7],
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Here, ®(44; ...; 4,) is the reciprocal space nth-order IFCs. @, (0by;l;by; ...; 1, by) is the real space nth-order
IFCs among the atoms {b;} in the cells {/;} along orientations {x;} (i = 1, ...,n). My, is the mass of atom b; (i =
1,...,n). e(b;; 1) is the eigenvector of atom b; (i = 1, ...,n) at phonon mode A. Note that permutation symmetry

and crystal symmetry are strictly enforced to V},(44; ...; 4,) in our calculation.

In phonon system, the heat flux is resulted from the deviational distribution function from equilibrium
given as nf =n, —nj. At a small VT, we consider a small deviation from equilibrium (nf « nd), which gives

the linearized form of Boltzmann transport equation,
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where 4, ;s is the scattering matrix that quantifies the transition rate from A’ to A, which can be obtained by
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Considering a linear expansion of n, with respect to VT, nf = (—ang/aT)F,l-VT, where the

expansion coefficient F, can be obtained by solving the linearized Boltzmann transport equation through
self-consistent iteration. Since the heat flux J¢ =%Z,1 hw, ving = —K“[”VBT the lattice thermal

conductivity can be derived from
1 a B
K = Nz Cuvy Fy (s12)
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where a and S denotes the crystal directions and 1 = (g, p) labels a phonon mode with wave vector q
and polarization p. C; and vy is the volumetric specific heat and the group velocity along a direction of

phonon mode A, respectively. N is the number of g-points in the mesh of the Brillouin Zone.



S3. Comparison of temperature dependent thermal conductivity of R3m-BNC: vs. BAs.
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Figure S1. Thermal conductivity of R3m-BNC; vs. BAs, considering both isotopically pure and naturally
occurring isotope concentrations.

S4. Comparison between RTA and iterative solution of thermal conductivity.
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Figure S2. RTA vs iterative solution of thermal conductivity.



S5. Comparison of phonon mean free path spectra calculated with and without four-phonon

process.
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Figure S3. Phonon mean free path distributions calculated with and without 4-phonon scattering for (a) R3m-
BNC: and (b) BAs. 3ph indicates the calculation with only 3-phonon process and 3+4ph indicates the calculation

with both 3 and 4 phonon processes.

S6. Details in crystal structure.

We calculated BNC; of different R3m, Pmm2, and P4m2 phases using primitive cells with four
atoms. The primitive cells for different phases are shown in Figure S3. The first Brillouin zone for

different phases are shown in Figure S4.
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Figure S4. Primitive cell of (a) R3m-BNC,, (b) Pmm2-BNC; and (c) P4m2 -BNC,. The pink, gray and blue
spheres indicate boron, carbon, and nitrogen atoms respectively.



Figure S5. First Brillouin zone of (a) R3m, (b) Pmm2, and (c) P4m2 phases of BNC..

S7. Electronic band gap

We calculated the electronic structure of R3m, Pmm2, and P4m2 phases of BNC; based on density
functional theory using Heyd-Scuseria-Ernzerhof screened hybrid functional [8] with SG15 Optimized Norm-
Conserving Vanderbilt pseudopotentials [9]. We used 12x12x12 Monkhorst-Pack grid and 6x6x6 mesh for the

sampling of the Fock operator. The kinetic energy cutoff for wavefunctions is 120 Ry. The convergence of all the
setting has been carefully checked. We found that R3m-BNC; has a wide bandgap at 5.1 eV. And the calculated

electronic band gap for Pmm2 and P4m2 are 2.9 eV and 3.2eV, respectively.
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