

Figure S1. Length dependence of the nanowire inverse-transconductance. The inverse-transconductance, $R_m=1/g_m$, was calculated from the linear scale transconductance, g_m , at bias voltage of 10 mV and scales linearly with channel length from 190 nm to 1 μ m. The

linear increase is consistent with the charge control model at low bias, $\mu = \frac{g_m}{V_{ds}} \cdot \frac{L^2}{C}$, since

the gate capacitances per unit length, $C/L = 800 \text{ aF}/\mu\text{m}$, is a constant in these devices (i.e., the devices have the same dielectric thickness and top gate geometry). The average mobility determined from these data is 640 cm²/V-s.