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1. Modeling and simulation details. 
 
The time-domain thermoreflectance (TDTR) experiments measure the transient 
thermoreflectance response of metallic heaters in the short time domain (0~6 ns), with sub-
picosecond temporal resolution. Since the change in thermoreflectance is linearly proportional to 
the change in temperature, measuring thermoreflectance is equivalent to measuring the 
temperature of the metallic heaters [1]. To gain insight into the thermal transport in the 
experiments, we numerically solve the full spectral Boltzmann transport equation (BTE) under 
the relaxation time approximation and compare the BTE solution to the Fourier prediction to 
obtain the effective thermal conductivities across a wide range of length scales [2]. The 
simulation geometry consists of a periodic heater array sitting on top of the underlying substrate, 
mimicking the experimental sample configurations. Since the structure is periodic, the system 
can be studied by looking at the thermal transport in one single pitch of the repeated structure by 
applying periodic boundary conditions. Both the BTE and Fourier simulations are performed 
under transient heating conditions.  

 
To solve the BTE, we used the recently developed variance-reduced Monte Carlo (VRMC) 
simulation technique [3-4] which substantially improves the computational efficiency and 
accuracy through the introduction of a reference state. In the VRMC model, only the deviation 
from the reference state is simulated. The deviational BTE is shown in Eq. (S1):  

 

                                    ��
∗

�� � ������������ � ��∗ � � �∗���∗
����                                                         (S1) 

 

where �∗ � ����� � ������ is the deviational phonon energy distribution, and ��∗ � ������ �
������ is the locally thermalized deviational energy distribution, �� is the phonon quantum of 
energy with � being the Planck constant divided by 2π, ��  is the actual phonon distribution 
function, ��� is the Bose-Einstein distribution function, and ���� is the phonon group velocity. 
The reference distribution function ����� is the Bose-Einstein distribution function evaluated at a 
reference temperature ���.  
 
For the heater, we assume phonons as the sole heat carriers and use the experimental dispersion 
relation along the [100] direction [5]. No electronic contribution to heat transport is considered. 
The phonon lifetime in the heater is assumed to be a constant, 10ps. For the silicon substrate, we 
use first principles density functional theory (DFT) calculated lifetimes and the experimentally 
measured phonon dispersion along the [100] direction as the input [5]. Both acoustic and optical 
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phonon branches are included in the simulation. The reference temperature in our simulations is 
chosen to be the substrate initial temperature (300 K), and thus no phonon is initialized in the 
substrate, since the deviational energy is zero. In the heater, we discretize the dispersion into 
2000 frequency bins and randomly populate five million computational phonon particles at t = 0 
s according to the phonon spectrum of the metal transducer. The initialized phonon particles are 
allowed to move subject to the specified boundary and interface conditions. Except for the four 
side surfaces of the substrate, for which periodic boundaries are assumed. All the other 
boundaries are approximated as diffuse adiabatic walls, consistent with experimental conditions, 
except at the heater-substrate interface, where phonons have a finite probability to either transmit 
through interface or reflect off it. The interface transmittance values are calculated using the 
model described in Ref. [6]. During each time step, we track the trajectory of each particle, and 
we determine whether boundary or interface scattering occurs by comparing the particle’s 
position with the boundary and interface planes. If phonons reach one diffuse wall, they are 
diffusely reflected back into the domain; if phonons arrive at one periodic boundary, they are 
moved to the corresponding boundary. If interface scattering occurs, a random number is 
generated and compared with the relevant phonon’s transmissivity to determine whether 
transmission or reflection occurs subsequently [7]. The heat flow into the substrate results from 
phonon transmission from the metal transducer to the substrate. At the end of each time step, we 
sample the phonon energy in each discretized spatial cell and we then invert the local phonon 
energy density to determine the equivalent equilibrium temperature distribution, as shown in Eq. 
(S2): 
 

ݑ                            ൌ ∑ ׬ ԰߱ ఠ݂଴்ܦሺ߱, ሻఠ೘ೌೣ,೛݌
଴ ݀߱௣                                           (S2) 

 
where u is the local phonon energy density, T  is the equivalent equilibrium temperature to be 
computed, ߱௠௔௫,௣ is the maximum phonon frequency for branch p, while ܦሺ߱,  ሻ is the phonon݌
density of states for branch p, and the summation is over all the phonon branches.  Anharmonic 
scattering is processed as a probabilistic step following the energy sampling [7]. Anharmonic 
scattering, if it occurs, alters all the phonon properties (travelling direction, frequency, branch, 
and group velocity), expect for the phonon position. The ‘advection – energy sampling – 
scattering’ is repeated until the specified simulation time is reached. Over the course of the 
simulation, the heater surface temperature is recorded as a function of simulation time.   
 

The interface conductance G is defined as the heat flux across an interface divided by the 
equivalent equilibrium temperature difference across that interface, and the interface 
conductance can be related to the spectral phonon transmissivity T12(ω) by calculating the heat 
flux and the equivalent equilibrium temperature difference on each side of the interface [6, 8]: 

 

                                                           G ൌ  (S3)                                                                 ܶ߂/ݍ

ݍ                            ൌ ∑ ׬ ݀߱ ׬ ݀߶ଶగ
଴ ׬ ଵߤ݀ߤ

ିଵ
ఠ೘ೌೣ,೛
଴ ൛݁∗ݒఠ,௣ܦሺ߱, ሻ݌ ଵܶଶఠൟ௣                       (S4) 

where q is the heat flux at the interface, ܶ߂ is the temperature difference across the interface, ߤ is 
the directional cosine, and ߶ is the azimuthal angle. Note that ݁∗ depends upon the frequency, 
branch, and phonon propagation direction.  
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The substrate thermal conductivity is treated as a fitting parameter to match the Fourier solution 
to that of the phonon BTE. An example of the fitting result for a heater size of 600 nm is shown 
in Fig. S1. At a 600nm heater size, the effective substrate thermal conductivity, a measure of the 
degree of quasiballistic transport in the substrate, is much lower than the bulk value, indicating a 
significant ballistic effect.   

 

 

 
Supplementary Figure 1. Example of the fitting of the substrate effective thermal conductivity by 
matching the Fourier solution to the BTE results at a heater size of 600 nm, and a period of 1200 nm. The 
best fitting provides an effective thermal conductivity of k = 46 W/mK. 

 
 

To solve the Fourier diffusion equation, we use the commercial software package: COMSOL 
Multiphysics (http://www.comsol.com). The initial, boundary, and interface conditions are 
consistent with those used in the VRMC model [3-4]. A thin layer thermal resistance between the 
metallic thermal transducer and the substrate materials is included, whose conductance (G) 
equals the interface conductance calculated from the interface transmissivities in the VRMC 
model. To improve the speed of the calculation involving different values of the substrate 
thermal conductivity k, we use a modified version of a standard multilayer model for analyzing 
TDTR signals [1]. In the typical model, the surface temperature for a multilayer stack consisting 
of the transducer, interface, and substrate subject to a Gaussian pump and probe beam is obtained 
using transfer matrices. To use this approach for dots, we first solve the heat equation in 3D 
Cartesian coordinates, rather than in cylindrical coordinates, since the geometry of the dot array 
is naturally represented in this coordinate system. We define the z direction as the cross-plane 
direction, while the x and y directions are the two in-plane directions. The surface temperature 
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frequency response to a periodic heating with frequency omega, H(ω), can be analytically 
represented as a function of the in-plane spatial frequencies, qx and qy, using the same equations 
as in Ref. [1]. The heating profile, Xnm of a square dot array, can be exactly expanded in a 
Fourier series as: 

 

 

ܺ௡௠ ൌ

ە
ۖ
۔
ۖ
ܦۓ

ଶ/ܮଶ	,																																																																											݊ ൌ ݉ ൌ 0
஽/௅
ଶగ௠௝ ሺ1 െ expሺെ݆݉ߗ଴ሻሻ,																																						݊ ൌ 0,݉ ് 0
஽/௅
ଶగ௡௝ ሺ1 െ expሺെ݆݊ߗ଴ሻሻ,																																							݊ ് 0,݉ ൌ 0
ିሺଵିୣ୶୮	ሺି௝௠ఆబሻሺଵିୣ୶୮ሺି௝௡ఆబሻሻ

ସగమ௡௠ ,																																			݊	 ് ݉ ് 0

                       (S5) 

 

where Xmn denote the Fourier coefficients for a two-dimensional square wave, Ω0=2pj/L, j is the 
unit imaginary number, n and m correspond to the spatial frequencies qx = nΩ0 and qy = mΩ0, 
respectively, and D and L are the width and period of the dot array, respectively. Then, by 
performing the same sequence of steps in Ref [1], namely performing an inverse Fourier 
transform and averaging over the same spatial profile to model the probe sampling, the following 
expression for H(ω) is obtained: 

 

ሺ߱ሻܪ ൌ 	෍෍|ܺ௡௠|ଶ	ሺെܥܧ ሻ௡,௠																																																																											ሺS6ሻ
௠௡

 

 

where E and C are the elements of the transfer matrices defined in prior works. This function can 
then be used directly to fit the experimental data as in Ref [1].  

To account for the discontinuous nature of the dots, we model the transducer as a special layer in 
which the thermal conductivity in the in-plane directions is set to 0 while the cross-plane value 
remains its normal value. In this way, heat conduction in the transducer can only occur in the 
cross-plane direction, transferring the square wave heating profile in the transducer to the 
substrate. 

This procedure neglects the Gaussian intensity variation of the pump and probe beams over the 
dot array. However, the heat conduction due to this pump intensity variation is much slower than 
heat conduction from the dots by a factor of (D/P)2, where D is the dot width and P is the pump 
diameter. Since a P value of 60 ~ 100 microns is much larger than the typical dot widths 
considered in this work, the slower heat conduction over the length scales of the pump can be 
neglected with excellent accuracy. Note that the 60 micrometer heat size D is effectively defined 
by the pump diameter. To check whether the model is still valid at this extreme case, we 
performed additional calculations including the effects of Gaussian intensity variation of the 
pump and probe beams, as well as the periodicity of the multi-heater arrays, and we fitted the 
experimental data in this way. No appreciate difference in fitted results of thermal conductivity 
(k) has been observed.  
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We should also point out that the Fourier fitting to the experimental results provides good fittings 
when the heater size D > 30 nm, and becomes worse at D = 30 nm, as shown in Fig.S2.  This is 
expected since the Fourier law cannot well capture the ballistic limit, where a very high portion 
of the phonons experience ballistic transport [9].  This poor fitting is not a major concern for the 
final extraction of the phonon MFP distributions, since the purpose is to use the effective thermal 
conductivity to extract the phonon MFP distributions, and the ballistic transport effect is thus 
properly included in the suppression function. 

© 2015 Macmillan Publishers Limited. All rights reserved
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Supplementary Figure 2. Experiment designed to verify the transition of heat transfer into the ballistic 
limit. a, this schematic shows the fabrication strategy: the pitch size is fixed at 200 nm, and is relatively 
long to enhance the ballistic effect by avoiding mutual coupling from phonons injected from different 
heaters. Heaters of different sizes under 100 nm are fabricated. b-d, experimental data (red circle) is fit by 
the diffusive model (blue line) for 90 nm, 50 nm and 30 nm heater sizes, respectively. To illustrate the 
fitting sensitivity, calculated curves (black dots) using the thermal conductivity changed by ± 10% of the 
best value are plotted.   

© 2015 Macmillan Publishers Limited. All rights reserved
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2.  The structural and material design of nanoscale heaters 
 
2.1 Nano-patterned periodic metallic heater array 
 
The nanoscale heaters are two-dimensional arrays with a fixed filling fraction (FF, the ratio of 
the heater size (D) to the array period (L)) of 1:2. The samples are prepared using electron beam 
lithography and metal evaporations to define and insulate the heaters from surrounding patterns. 
Alignment with stitching accuracy down to sub-10 nm is applied to connect the two layers with 
nanoscale gaps for thermal insulation (Elionix ELS, 125 kV) [10]. High magnification SEM 
images of the small diameter (30 nm and 90 nm) samples are shown in Figure S3.   

 

 
Supplementary Figure 3. SEM images of metallic patterns of small heater sizes. a) and b), 90 nm heater 
width. c) and d), 30 nm heater width. 

 
 
2.2 Effect of pattern periodicity 
 

Our experiments, calibrations, and simulations, all included the effects from periodic heater 
arrays and their mutual interactions. Our simulation used proper boundary conditions (periodic 
boundary condition) to take into account interactions among heaters. In addition, we expect the 
heat dissipation rate (and thereby the substrate effective thermal conductivity) in the heater 
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depends upon the design of the filling fraction, which is the ratio of the heater size (D) to the 
array period (L). We have performed such detailed simulations and discussions in Ref. 11. 

 
As the distance between adjacent heaters becomes shorter than the phonon mean free path, 
additional size effects are introduced [11]. This effect is properly accounted for by the 
suppression function S(/D, D/L), which is extracted by comparing experimental data and first-
principles simulation results on Si, as explained in the manuscript. Since our experiments 
maintained the values of D/L approximately constant, S is only a function of /D. 

 
 
2.3 Effect of heater shape at small heater sizes 
 
For our smallest heater size (30 nm), the metallic patterns look round shaped due to the 
resolution of lithography process, as shown in Fig. S3(d). To check whether the heater shape 
affects fitting results for the 30 nm heater width, we performed additional simulations with both 
square and circular shapes. The cross-sectional areas are kept equal for both heater shapes. As 
shown in Fig. S4, the temperature dependence curves from two different heater shapes overlap 
excellently, implying that the heater shape at ~ 30 nm heater size does not influence our 
interpretation significantly. 

 
Supplementary Figure 4. Comparing temperature decay curves for 30 nm heaters with square shape (red 
square) and circular shape (blue line), respectively. a), simulations based on Fourier’s equation. b), 
simulation from Monte Carlo modeling. Both simulations show no appreciable differences between 
square and circular heaters. For simulations based on Fourier’s equation, we can intentionally change the 
thermal conductivity k by ± 10% (black dashed lines, results from square and circular shaper are totally 
overlapping) to test the sensitivity. 

 
 
2.4 Effect of different heater materials 

© 2015 Macmillan Publishers Limited. All rights reserved
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In theory, phonon transmission across an interface and the subsequently ballistic phonon 
transport is a coupled process [12]. It is hence uncertain whether the phonon MFP we extracted 
is influenced by the choice of the transducer that injects phonons into the substrate.  We have 
tested Al and Cu as heater materials on sapphire, and found that the measured thermal 
conductivity reduction is similar in each case (Fig.S5).  

 
 

Supplementary Figure 5. Fitted thermal conductivity at different heater sizes at 300 K for a thermal 
transducer using aluminum (black circle) and copper (red triangle), with different interfacial 
transmissivity values between the two metals and substrate material (sapphire). No appreciable 
dependence of the thermal conductivity was observed for the different metal transducers.  

 
2.5 Effect of the interface conductance 
 
We also performed Monte Carlo simulations using different interface conductance values by 
varying the phonon transmittance on silicon, and we found that the simulation results do not 
change much (Fig.S6).  These experiments and simulations show that ballistic phonon transport 
in the substrate is the dominant mechanism for the reduced thermal conductivity. 
 

© 2015 Macmillan Publishers Limited. All rights reserved
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Supplementary Figure 6. Fitted thermal conductivity at different heater sizes for Si at 300 K for several 
specified values of interfacial conductance G, with each G corresponding to a different transmittance in 
the BTE/Monte Carlo model. There is no appreciable dependence of the thermal conductivity on the 
specified interfacial conductance. G = 2.5×108, 1.1×108 and 5×107

 W/m2K for green triangles, red circles, 
and blue crosses, respectively. 

 
 
2.6 Effect on the metal film quality 
 
In order to measure the quality of metal film, we performed Van Der Paw measurements to 
determine the electrical conductivity of the film studied (Fig. S7). The obtained resistance values 
from eight different configurations are very close (~ 0.15 Ohm), indicating that the film is 
uniform and continuous. 
 
The Van der Pauw Equation used in this analysis is:   
 

      exp(-πRA/RS) + exp(-πRB/RS) = 1,                                        (S7) 
 
where RA = (R21,34 + R12,43 + R43,12 + R34,21)/4 , RB = (R32,41 + R23,14 + R14,23 + R41,32)/4. 
 
We obtain the resistivity of the silver film to be 34.7 nΩ·m, which is a couple of times more 
resistive than the literature value of bulk silver, and this higher resistivity is due to the 
polycrystalline nature of the film. 
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Supplementary Figure 7. Van Der Paw measurement. a, film geometry. b, illustration of the current 
injection and voltage measurements from different contact pairs. c, typical I-V curve. d, table of all eight 
groups of measurement results.  

 
2.7 Effect on the thermoreflectance of metals 
 
The optical properties of metal films depend on fabrication process. To ensure good signal 
fidelity, the thermoreflectance change signals of the metal films on the same chip of the nano-
patterned heater arrays are measured prior to the size-dependent measurement. Fig. S8 shows a 
large contrast in the signal amplitude measured from one sample.  
 
To estimate how much the detected signal from a typical hybrid structure represents the surface 
temperature change (signal fidelity), the normalized thermoreflectance signal (ΔR/R) is 
simulated using the RF module in the commercial software package: COMSOL Multiphysics. A 
linear temperature-dependent optical property of the metals is considered. Normalized 
thermoreflectance change signals (ΔR/R) are obtained for metallic heaters and hybrid structures, 
respectively, and the signal fidelity is defined as their normalized ratios. The corresponding 
thermoreflectance change of aluminum and silver films are also simulated, and their ratio is 
denoted by ΔRAl / ΔRAg. The simulation results as shown in Fig. S8c is used to estimate the 
signal fidelity.   

© 2015 Macmillan Publishers Limited. All rights reserved
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To verify modeling results, we performed experiments on sapphire down to a 30 nm dot size 
(Figure S8d and Fig.2d in the main text).  This figure includes the thermal conductivity extracted 
from pure Al dots, which does not have an issue related to the signals from two metals, and from 
the hybrid structure between them. The agreement between the thermal conductivity values 
measured using the two methods give confidence in the results obtained with the hybrid structure. 
 

 
Supplementary Figure 8. a, Thermoreflectance change (ΔR) is measured by TDTR, for an aluminum 
film (blue) and silver film (red). b, the ratio of  ΔR between aluminum and silver film plotted with time-
dependence. c, simulated signal fidelity for a heater size D = 170 nm, as a function of the ratio (ΔRAl / 
ΔRAg). d, experimental verification is performed using a transparent material -- sapphire (figure is re-
plotted from Fig. 2d in the main text). Data measured from sapphire samples with pure aluminum heaters 
(red) and hybrid structures (black) show no appreciable difference in the thermal conductivity when using 
different heater sizes, within the measurement error range. 

© 2015 Macmillan Publishers Limited. All rights reserved
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2.8 Surface acoustic waves (SAWs). 
 
For most data points, no appreciable SAW signal is observed in the detected TDTR signal (as 
shown in Fig. 2c and Fig. S2). However, SAW signals are observed for samples with a heater 
size value D = 400 nm. For the data with SAWs (Fig. S9), the averaged signal is fit by the 
Fourier law to obtain thermal properties [13]. 
 

 
Supplementary Figure 9. SAW is appreciable when the heater size D = 400 nm, and the fitting is shown 
for (a) the thermal properties (blue line) and (b) the SAW lifetime. 

 
 
2.9 Approximate expression for keff under the constant MFP assumption 
 
The problem of ballistic electron transport at point contact was treated by Sharvin [14] and 
Wexler [15], and similar phenomenon can be expected for phonon transport [15-17]. It is 
worthwhile to see whether our experiment can be fitted with a simple expression assuming a 
constant MFP following a similar approach. We derive below an approximate expression under a 
constant MFP approximation. In the stead-state and purely ballistic limit, Wexler obtained the 
spreading resistance as (Eq.(11) in his paper) 

 ܴ௦,௕ ൌ ଼ஃ
ଷగ௞஽మ (S8) 

where D is the diameter of the constriction.  In the diffusion limit, the spreading resistance is 
given by 

       ܴ௦,஽ ൌ ଵ
ଶ஽௞                              (S9) 
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One way to bridge the ballistic limit and the diffusion limit is to sum up the diffusion and 
ballistic resistances such that the effective thermal resistance is correct in both the purely ballistic 
and purely diffusive limits: 

 
1

2Dkeff

 8
3kbD2

 1

2Dkb

 (S10) 

 
keff

kb

 1

1 16
3


D

 (S11) 

where kb is the bulk thermal conductivity. This expression is similar to other approximations that 
we often see in heat conduction and radiation, including the one that Chen gave before for heat 
conduction surrounding a nanoparticle [16]. In Fig. S10, we plotted keff/kb vs. D/Λ, by 
optimizing the Λ values to achieve the best fit.  One can see that using Eq. (S11), we can 
reasonably fit the experimentally determined keff by taking an average MFP value equaling to 
935 nm.  Despite the reasonable fitting, we should not undermine the fact that MFP varies widely 
as derived from our experiment. In fact, it has not been possible to determine this average MFP 
value without the measured effective keff data.   
 

 
 
Supplementary Figure 10. Comparison between the measurement and prediction from the constriction 
resistance model.  
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