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ABSTRACT: Recent advances in machine learning (ML) have impacted
research communities based on statistical perspectives and uncovered
invisibles from conventional standpoints. Though the field is still in the
early stage, this progress has driven the thermal science and engineering
communities to apply such cutting-edge toolsets for analyzing complex
data, unraveling abstruse patterns, and discovering non-intuitive
principles. In this work, we present a holistic overview of the applications
and future opportunities of ML methods on crucial topics in thermal
energy research, from bottom-up materials discovery to top-down system
design across atomistic levels to multi-scales. In particular, we focus on a
spectrum of impressive ML endeavors investigating the state-of-the-art
thermal transport modeling (density functional theory, molecular
dynamics, and Boltzmann transport equation), different families of
materials (semiconductors, polymers, alloys, and composites), assorted
aspects of thermal properties (conductivity, emissivity, stability, and
thermoelectricity), and engineering prediction and optimization (devices
and systems). We discuss the promises and challenges of current ML
approaches and provide perspectives for future directions and new algorithms that could make further impacts on thermal
energy research.

Thermal energy is the main form for energy conversion,
storage, and thermal management: It converts to 90% of
total electricity generation,1 represents 80% of

residential energy consumption,2 and consumes 50% of the
electricity used in computers and data servers for thermal
management.3 Efficient utilization of thermal energy, including
conversion, storage, and thermal management, plays a key role in
global sustainability while relying critically on innovations in
thermal materials systems. Over the past decades, tremendous
efforts have been devoted to modeling materials’ structures with
designed thermal properties and improved energy efficiency.
Those computational approaches, from empirical to first-
principles, atomistic to microscopic and multi-scales, diffusive
to non-equilibrium, have made exciting progress in all aspects of
thermal properties and performance. However, the significantly
expanded materials database not only provides new materials
with extreme properties and energy efficiency beyond the state
of the art,4−22 but also poses challenges on further analysis and
development through multi-dimensional big data. In the
meantime, machine learning (ML) has gained its visibility in

dealing with big data such as image recognition, social media,
and game contests between human and artificial intelligence and
has manifested its applicability in autonomous driving, real-time
language translation, and new materials discovery.23−26 The
power of ML mainly comes from its statistical analysis of big
data, which also exists in thermal energy materials research such
as experimental results, ab initio calculations, and molecular
dynamics (MD) simulations. Therefore, our thermal energy
community actively embraces the rising and development of ML
approaches to accelerate the research, from the bottom-up
materials design to top-down system optimizations.
The applications of ML in energy research can be indicated by

the exponential growth of publication numbers with energy and
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energy materials focus illustrated in Figure 1. The combination
between ML and energy research observed its onset around

2011, when IBM’s Watson competed on Jeopardy against the
two human champions and won,27 and took its rocket around
2016 when Google’s AlphaGo finally beat the top human players
in the board game Go.28 Nowadays, ML has been implemented
in almost every aspect of thermal energy study. At the
fundamental level, the Schrödinger equations of quantum
systems are solved with the assistance of ML algorithms, such
as training artificial neural networks (ANNs) for the exchange-
correlation functional of density functional theory (DFT),
which helps the calculation of electronic structures and
interatomic interactions.29 The thermodynamic properties
such as thermal stability, entropy, and enthalpy of materials
can be predicted from the quantum mechanics calculations.30

Combined with the MD and/or Boltzmann transport equation,
where ML can also play a role, the transport properties such as
thermal conductivity, thermal boundary conductance, thermal
emissivity, thermoelectric properties, and others can be
predicted.18,31−35 Most importantly, with the accumulation of
atomistic modeling data, the high-throughput discovery of
thermal materials becomes possible using ML as the key tool.
The philosophy of material discovery will be revolutionized
from the traditional and slow trial and error strategy to modern
efficient high-throughput screening from millions of candidate
materials. On the other hand, the structure and composition of
materials are also decisive to their thermal performance, such as
the porous structure of thermal insulation materials and
components of composite materials.36−40 It is labor-intensive
and time-consuming to scan all the compositional or structural
parameters to find the optimal material synthesis and
manufacturing recipes. By taking advantage of the ML’s power
on optimization problems with limited knowledge, the efforts on
material design can be significantly reduced. The structural
optimization of thermal energy devices is another challenge for
engineers. For instance, the fin shape and size are important
factors in the performance of heat exchangers, the thermal
barrier coating layer thickness to turbines, and the diameter and
arrangement of pipes to boilers in power plants. It has become an
emerging trend to use ML to design thermal devices. On the
other hand, the instant response to real-time sensor reading is
important in different applications, especially in thermal energy
fields, like the ventilation, cooling and heating power control in

response to the real-time temperature, and humility reading in
buildings. The decision-making power ofML is suitable for these
scenarios, considering their big success in games like Go.
This emerging interdisciplinary area is still expanding rapidly

and should be reviewed promptly regarding the state-of-the-art
development, existing opportunities, and challenges. First, we
provide a brief introduction to ML concepts and several
common algorithms for thermal energy research. Then we
discuss the intrinsic thermophysical properties prediction of
homogeneous materials, including thermodynamic properties,
thermal transport properties, and thermoelectric properties. The
implementations of ML in structural and compositional
optimization of heterogeneous materials are also discussed
from porous structures to composite materials. In addition, the
applications of ML in the design of thermal devices and
operation of energy systems will be highlighted, including heat
exchangers and heating, ventilation, and air conditioning
(HVAC) systems in buildings. We hope that this review can
serve as an inspirational reference to the thermal energy research
community and encourage them to integrate ML into their own
research.

■ MACHINE-LEARNING CONCEPTS, ALGORITHMS,
AND IMPLEMENTATION: WHAT AND WHY?

Machine learning is a concept in applied statistics and was
initially defined by Tom M. Mitchell as a computer program to
learn from experience (E) with respect to some class of tasks (T)
and performance measures (P) if its performance at tasks
improves with experience.41 Considering the continuing
expansion of ML methods and our focus on its applications
for scientific research, we are not ambitious to make a
comprehensive discussion of ML algorithms here. Instead, we
summarize the most representative and popular algorithms in
Figure 2 at the balancing point of completeness and conciseness.
ML can be mainly categorized into supervised, unsupervised,
and reinforcement learning, depending on the computer
program’s interaction with humans or certain feedback designed
by humans. Supervised learning is to learn a relationship
between the input X = {X1, X2, ..., XN} and output Y = {Y1, Y2, ...,
YN} from a labeled training set of observations of (X, Y) under
human guidance. Each element in the X is a D-dimensional
vector Xi = [Xi,1, Xi,2, ..., Xi,D] representing D features. For
materials science, the features are usually called material
descriptors. The mathematical function f(Xi) to map input to
output is given by humans no matter if it is explicit or implicit.
Supervised learning is mainly used for classification and
regression, conducted through various algorithms including
the basic linear regression method and the more recent methods
like ANNs and random forest. Unsupervised ML can develop
learning without human guidance and the machine needs to
capture certain patterns from untagged data, such as the
probability density. The dimension of X in unsupervised
learning can be much higher than that in supervised learning.
This type of learning is usually used for clustering and
dimensionality reduction, for example, searching for the
principal variation directions of data in a high-dimensional
space, or called principal component analysis. Reinforcement
learning is to let machines learn how to interact with an
environment dynamically instead of understanding the patterns
or mappings behind the static data. In the reinforcement
learning process, the machine can earn an immediate reward
once it takes a certain action to make state transition happen. It
suits decision-making to achieve optimal performance for

Figure 1. Number of machine learning publications per year with
energy and energy materials focus since 2005, highlighted with the
milestone achievements.
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dynamically active scenarios, like robot control and game theory.
With the recent improvement of computational resources and
rapid data expansion in many areas such as commercial
behaviors, industrial operations, and academic research, ML
has been successfully applied to handle complex and high-
dimensional problems during the past decade. In the following
context, we are going to introduce several popular ML methods
for materials discovery.
Linear Regression. As the most traditional supervised

learning method, linear regression assumes the output Y is a
linear function of the input data X, as shown in Figure 3a.
Mathematically, the linear function can be expressed as

= +f X w X w( )i i
T

0 (1)

where wT, w0 are the weight vector for the D features and offset
from zero point. In the case that the Y values cannot be
approximated by a linear function of the initial set of input data
X, a new set of input data can be constructed from X to fulfill the
linearity requirement, such as f(Xi) = wTG(Xi) + w0, where G(Xi)
is a nonlinear function of Xi. To determine the weighting
parameters, the residual sum of squares should be minimized,
i.e., min∑i=1

N (Yi − wTXi − w0)2. Due to the model’s simplicity,
these mathematical equations can usually be analytically
determined. For simple problems, linear regression can provide
fast, robust, and physically interpretable fitting results. In
thermal transport, it is exemplified by the linear relationship
between heat flux and temperature gradient in solids, i.e.,
Fourier’s law. However, materials science is a complex subject,
which can pose challenges to linear regression so sometimes it

may not work well and cause issues, for example, overfitting, for
determining materials properties.
Kernel Methods.Under the kernel trick,42 a kernel function

is used to transform nonlinear regression problems by mapping
the input data to a higher dimensional space (feature space) so
that they become linear or separable. In this way, computational
efficiency can be improved by using a kernel function, rather
than explicitly specifying the mapping function G(Xi). The most
common kernel functions include radial basis function kernels,
Matern kernels, Fisher kernels, String kernels, and others.43 The
kernel functions can easily calculate the inner products of data in
the feature space K (Xi, Xj) = G(Xi)G(Xj) without knowing the
explicit form of G(Xi), which essentially is the distance or
similarity of two data points in the feature space. The distance
can be input to various ML methods, including support vector
machines, Gaussian processes, principal components analysis,
relevance vector machines, and so on. The kernel methods were
initially designed for pattern recognition, and recently they have
been applied for calculating thermal transport properties.44−46

Artificial Neural Networks. The development of ANNs is
inspired by the signal transmission and processing in biological
neural networks that constitute animal brains. ANNs consist of a
collection of stimulating units or nodes, called artificial neurons.
Each neuron receives, processes, and transmits signals to
adjacent neurons. The neurons are connected to each other in
various patterns via links, which determine the strength of one

Figure 2. Categories of machine-learning algorithms, including
supervised, unsupervised, and reinforcement learning. Under each
type of learning, there are multiple algorithms, specialized for
targeted problems.

Figure 3. Representative machine-learning algorithms. Examples to
illustrate (a) linear regression, (b) feed forward neural network, (c)
reservoir computing, and (d) random forest.
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neuron’s influence on another, mimicking the biological axon−
synapse−dendrite connections. One representative ANN is the
feed-forward neural network, as shown in Figure 3b, consisting
of one input layer (Xi), multiple hidden layers (Zi), and one
output layer (Yi). The input layer neurons process the input data
and feed the output data into the hidden layers. After several
layers are processed, until the processing of the last hidden layer
is achieved, the output layer neurons generate the output data.
Mathematically, the output of a certain neuron at the hidden
layer can be calculated as Zi = σ(wTXi + w0), where σ is an
activation function, defining if the neuron can be activated by the
excitation. Another ANN is reservoir computing as shown in
Figure 3c, by passing the input signals to the neurons reservoir,
where the neurons are not distinguished by layers but form a
reservoir and readout layer which is similar to the hidden layer in
the feed-forward ANN to generate a useful output data set. The
distinguishing feature of reservoir computing is the recurrent
behavior; i.e., the current response of a neuron is affected by the
stored historical information on all neurons, with different
strengths. Since reservoir computing only requires training the
readout layer under fixed reservoir dynamics, it can largely
reduce the computational cost for time-dependent thermal
operations considering the recurrent behaviors. For example,
reservoir computing can be applied to design a building heating
or cooling system that can automatically adapt itself by
temperature and humidity mapping between room and
environment or to optimize the cleaning strategy of a home
robot cleaner by deep-learning image processing and recog-
nition.
Decision Trees. A decision tree is a flowchart-like decision-

making process, where the root receives the input data, each
internal node is a logical question with possible answers
represented by the branches, and each leaf node is the final
answer to the series of questions. The decision trees can deal
with classification and operation problems accurately with
explicit logic. To avoid overfitting results, a random forest of

decision trees (Figure 3d) can be applied: Each decision tree
receives a random sample of the input training data set, different
from each other, called bagging. The trained decision trees will
generate a distribution of predictions, from which the final
output can be computed, for example by averaging or voting.
Random forest decision trees usually require much less
computational resources than the ANN while could be accurate
enough for simple regression problems. One advantage of using
decision trees in thermal energy materials is to evaluate the key
important material descriptors to determine thermal transport
properties.

■ WHY AND HOW TO IMPLEMENT MACHINE
LEARNING INTO THERMAL SCIENCE

The implementation of ML into thermal science spans from the
most fundamental ab initio modeling of thermal transport to the
prediction of thermal performance and optimized operation of
thermal energy systems. ML-assisted methods provide new
opportunities in addressing complex systems or mathematically
high-dimensional problems, which include the many-body
problems at the electron level, the atomic arrangement at the
lattice level, the imperfection and structural complexity at the
nano/microscale, geometric factors at the device level and
variable working conditions at the system level. Although the
application potential of ML in some areas has yet to be fully
demonstrated, the promise has been underscored by recent
progress. For example, as illustrated in Figure 4, supervised
learning finds its niche in high-throughput thermal materials
screening by establishing the relationship between various
materials descriptors and thermal conductivity, while unsuper-
vised learning can function as a differential equation solver,
which helps efficiently solve equations including the Schro-
dinger equation, Boltzmann transport equation (BTE), heat
conduction equation, Navier−Stokes (NS) equation, and
radiative transfer equation. In the following, we discuss in detail

Figure 4. General workflow of machine-learning-assisted high-throughput thermal energy materials discovery. Machine-learning relationships
between materials descriptors and thermophysical properties from the existing experimental and modeling big data in various databases can
help predict properties of unexplored materials and distinguish the important materials’ descriptors. Reprinted with permission from refs 47
and 48. Copyright 2016 Elsevier and 2016 American Physical Society.
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how ML plays an increasingly significant role in DFT, MD, and
BTE.

Machine-Learning-Assisted Density Functional
Theory. In thermal materials modeling, DFT often serves to
provide first-principles atomic interactions by calculating the
energy and force using quantum mechanics, which can be input
parameters for further calculations such as lattice dynamics, MD,
and BTE. For better discussion on machine-learning-enabled
DFT solutions, the basic idea of DFT is briefly revisited here. To
begin with, the many-body Schrodinger equation, which is the
foundation of quantum theory, in most cases is notoriously
difficult to solve in practical applications. Simplification efforts
have been made, with the central idea of describing an
interacting electronic system via its electron density. Remark-
ably, Hohenberg and Kohn related ground-state properties to
electronic density, which can further be explored based on the
self-consistent variational method, and thus laid the foundation
for a so-called orbital-freeDFT (OF-DFT)method or pureDFT
due to there being no need to solve the Schrodinger equation.49

To overcome the critical shortcoming in OF-DFT methods that
no accurate orbital-free kinetic energy functional can be found,
Kohn and Sham proposed to study a non-interacting electronic
system with the same electronic density of the original system,
invoking solutions based on single-electron wave functions, so-
called Kohn−Sham DFT (KS-DFT).50 All these milestones
make quantum mechanical calculations become tractable and
accurate to a great extent. The core challenges for current DFT
methods include the expensive computational cost for iterative
calculations and the accuracy of functionals. Although
commonly used approximations such as local density approx-
imation or generalized-gradient approximation exchange
correlations have been shown to work well for a broad range
of materials, the form of the exact functional remains
undiscovered, and these exchange-correlation approximations
often fail for strongly correlated systems in particular.
The major expectation of expediating DFT calculations with

ML is to reduce the computational resources required and
enable simulations of larger systems. Different from the most
current approximations beginning from local density approx-
imation and failing miserably when there is a poor starting point,
ML produced functionals that do not suffer the same problems if
it has good examples to train on. Some strategies have been put
forward to circumvent the expensive Schrodinger equation
calculations and optimize computational resources without
sacrificing accuracy. These strategies can be divided into two

groups:51 one is using ML to predict novel density functionals,
such as exchange-correlation functionals and kinetic energy
functionals, which can be used in traditional KS-DFT apparatus;
the other is bypassing KS-DFT to implement OF-DFT or
predicting electron density by direct mapping. Aiming to
improve KS-DFT methods, Nagai et al.52,53 developed ML
mapping using an ANN from electron density to an exchange-
correlation potential for a one-dimensional, two-body model
system trained using accurate reference data from exact KS
equations and applied their approach to small molecules. The
ML-trained functions exhibited performance comparable or
superior to that of the representative standard and hold promise
for modeling systems that cannot be treated using existing
functionals, such as those with dispersion interaction, self-
interaction error, and strong correlation. On the other hand, the
computational bottleneck of solving large-scale KS equations
induces great interest in investigating OF-DFT. This demands
accurate construction of a universal Hohenberg−Kohn func-
tional of electrons, especially a kinetic energy functional
considering its magnitude comparable to the total energy of
the system. Synder et al.54 employed Gaussian kernel ridge
regression on a kinetic energy functional and principal
component analysis on functional derivatives using exact
solutions at several discretized grid points as training data for
non-interacting spinless fermions in a 1D box and predicted
accurate results for other points that exceeded, by far, any
present approximations. The same approach was demonstrated
for calculating molecular-stretching and bond-breaking pro-
cesses and modeling highly correlated and infinite hydrogen
atom chains.55,56 However, the aforementionedMLmethods for
OF-DFT are limited by sacrificed accuracy of finding functional
derivatives in the Euler equation, which is important to solve for
ground-state electron density and energy. Hence, to further
improve the prediction accuracy for these quantities, Brock-
herde et al.57 replaced the iterative-solution-needing Euler
equation by direct-learning potential−density and density−
energy mapping and performed it on malonaldehyde, showing
that intermolecular proton-transfer processes could be well
captured. Similar works on sulfur-cross-linked carbon nano-
tubes,58 aluminum,59 and non-covalent systems60 demonstrated
the potential of such a direct mapping method from the atomic
local environment.
At present, the development of these methods is still at an

early stage where only proof-of-principle works have been done.
However, as they mature, solving of DFT problems could
become much more efficient and enable faster force extraction
and also computation on large unit cell materials which have
been rarely explored hitherto, owing to the extremely high
computational cost.
In addition to the DFT methods discussed above, an

increasingly important effort has been made recently to develop
post-DFT methods that aim to handle weak interactions, strong
correlations, phase transitions, and excited-state properties in
many-body systems. These include, to name a few, quantum
Monte Carlo (QMC), time-dependent DFT, and GW
approximations.61 It has been reported that, through the
combination with convolutional neural networks, lattice QMC
can be accelerated by more than an order of magnitude,62 and
QMC can correctly identify both continuous and discontinuous
quantum phase transitions, even the intermediate phases.63,64

GW convergence with respect to basis completeness can be
reached by solely relying on fast preliminary calculations with an
unconverged basis set using linear regression.65 On the other

Supervised learning finds its niche in
high-throughput thermal materials
screening by establishing the relation-
ship between various materials de-
scriptors and thermal conductivity,
while unsupervised learning can func-
tion as a differential equation solver,
which helps efficiently solve the
Schrodinger, Boltzmann transport, heat
conduction, Navier−Stokes, and radia-
tive transfer equations, among others.
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hand, statistical learning makes it possible to predict excited-
state properties, such as bandgaps, directly without performing
expensive quantum mechanical calculations. Na et al.66

predicted the bandgap of a crystalline compound using tuple
graph neural networks at an accuracy level of hybrid functionals
and GW approximations with largely reduced computational
expense; Rajan et al.67 computed bandgaps of MXene crystals
based on kernel ridges, a support vector, a Gaussian process, and
bootstrap aggregating regression methods, bypassing time-
consuming GW approximations; Knøsgaard et al.68 trained a
gradient boosting model and accurately predicted full GW band
structures. Although relevant applications have not been
extensively demonstrated in the thermal transport community
yet, further efforts should be devoted to enabling calculations of
phonon and electronic band structures for complex systems (i.e.,
strongly correlated materials) and better predicting energy
carriers’ coupling strengths involving excited states.
Machine-Learning-Assisted Molecular Dynamics. MD

is a widely used atomistic modeling approach to simulate the
dynamical motion of atoms and molecules, including the
thermodynamic and thermal transport properties. MD has the
capability of modeling disordered materials such as polymers
and amorphous structures,69 defects-contained materials,70,71

and high-temperature transport72,73 using the interatomic
potential that naturally incorporates all orders of anharmonicity
and requires no lattice periodicity. Empirical MD applies
Newtonian mechanics to evolve the dynamics of particles
governed by forces of specific potential forms. Assorted
macroscopic material properties can be further deciphered
from atomic trajectories invoking statistical correlations. The
key ingredient determining its simulation accuracy is the
interatomic potential. Conventionally, the potential is fitted to
various analytical expressions in an empirical way, such as the
well-known Lennard-Jones potential, the Stillinger−Weber
potential, the Buckingham potential, etc. These potentials, of
simple functional forms, however, often are not able to capture
the actual complicated interactions among atoms and molecules
under enormous configurations. Hence, the aspiration for
formalizing high-fidelity and configurationally widely held
potentials necessitates new paths, where ML is one of the
candidates. It does not require a rigid functional form and could
adaptively learn the embedded knowledge from the ab initio
energy landscape corresponding to a vast space of atomic
configurations, thus improving the accuracy when computing
energies and forces (error estimates: 0.1 meV/atom for energies
and 0.01 eV/A for forces) in later MD simulations.
We summarize a general strategy for using machine-learning

potential (MLP) to facilitate MD simulations, as shown in
Figure 5: To begin with, proper descriptor vectors (i.e., Smooth
Overlap of Atomic Positions descriptors,74 moment tensor,75

atomic orbital matrices,76 etc.) are constructed to uniquely
fingerprint atomic configurations and incorporate many-body
interactions; then, a training database of energies, forces, and
atomic descriptors is collected by performing ab initio MD or
applying a perturbation to crystals; furthermore, the MLP is
fitted employing various ML algorithms (Gaussian process
regression,77 support vector machines,78 etc.); last, MLP is used
as input to run MD in a conventional way. As MLP became
available, its practicability on heat-transfer modeling started to
become a hot topic among the thermal engineering community.
Studies using MLP-based MD simulations on graphene, CN,
MoS2, SiP, Si, SnSe, MoS2(1−x)Se2x, diamond, BAs, Ga2O3,
BaAg2Te2, the graphene/borophene interface, and the Ge/GaAs

interface have been reported in the literature, showing a
promising agreement with experiments or first-principle
calculations.70,73,79−86

As we are pleased to see MLP-enabled high-accuracy
calculations on these crystalline materials and interfaces, it is
more impressive to see its promising potential to unlock
prediction power that is prohibited in conventional methods
owing to either high computational cost or low prediction
reliability.87 Some notable works usingMLP forMD simulations
in thermal transport areas include high-temperature simula-
tions,72,73,88 phonon−defect interactions,70,71 and amorphous
materials.80,89 Specifically, MD can tackle high-temperature
simulation by directly tracking atomic trajectories, whereas DFT
based on ground-state force knowledge cannot give dynamically
stable information. Second, MLP could also contribute to
thermal transport modeling on defects-included materials by
fitting potential energy surfaces over a vast landscape of atomic
configurations due to flexibility, disregarding conventional
mean-field assumptions. Third, MLP can also be applied to
amorphous materials where heat carriers are propagons, locons,
and diffusons rather than phonons.
Machine-Learning-Assisted Boltzmann Transport

Equation and Other Partial Differential Equations. ML
can be used to assist in solving governing thermal transport
equations, for example BTE. BTE is an essential tool to bridge
microscopic phonons or electrons transport to macroscopic
properties. It provides the quantification of a distribution
function evolving in the spatial and temporal spaces, as well as an
external force, collisions and scattering, and drifting terms.
Solving the phonon BTE has been widely used to determine
temperature distribution, heat flux, and other thermal proper-
ties; however, it can be challenging due to its nonlinearity and
high dimensionality. In the past, gray models assuming all modes
have the same properties have always been used, which suffers
inaccuracy, for example, due to the fact that different modes
could have a wide span of mean free paths and, therefore, behave
differently at a given physical length scale. Recent progress in

Figure 5. General workflow of atomistic modeling of thermal
properties accelerated or improved by novel functionals for density
functional calculations, accurate force fields for molecular
dynamics, and numerical solutions for partial differential equations
assisted by machine learning. Reprinted with permission from ref
88. Copyright 2012 American Physical Society.
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numerical schemes like the Monte Carlo method, lattice
Boltzmann methods, and deterministic discretization-based
methods has been proposed to solve mode-resolved BTEs, but
with increased computational challenges such as slow
convergence and large memory requirements, as well as induced
uncertainties and accuracy issues. This dilemma calls for easier
and more efficient high-dimensional solvers.
According to the universal approximation theorem that a deep

neural network possesses the potential to accurately approx-
imate any continuous functions, it is natural to apply ML for
solving partial differential equations (PDEs) such as BTEs. The
incorporation of the governing PDEs’ residuals and initial/
boundary conditions with a regularization term into the cost
function converts the problem from solving PDEs to neural
network optimization. The parameters that minimize such a cost
function correspond to a solution in the form of a physics-
informed neural network. In this way, a solution can be learned
in a physics-constrained unsupervised manner, with small
uncertainty and less computational cost of discretization.
Progress has been made to use ML for solving phonon BTEs.
For example, a physics-informed neural network framework has
been developed by Li et al. to predict phonon energy
distribution with improved calculation speed under a steady
state90 and temperature gradient.91 With preliminary success,
such an early-stage physics-informed neural network framework
can be augmented for capturing transient thermal transport,
solving phonon and electron BTEs simultaneously, and
modeling complex structures. Some works also deal with
BTEs to tailor to other systems (entropy closure of the
momentum system, fluids, etc.) and properties.92−95 Moreover,
the framework of using ML to solve BTEs can be readily
extended to other macroscopic PDEs in thermal transport (i.e.,
heat conduction equation,96 NS equation,97 radiative transfer
equation98) and replace the current slow trial-and-error finite
element methods as well. ML has been shown to efficiently
provide accurate results in contrast to conventional methods.

■ THERMAL ENERGY MATERIALS GENEALOGY
The family of thermal energy materials consists of countless
members, which can hardly be exhaustively reviewed. Here, we
aim to discuss several representative categories of materials that
form the principal components of thermal energy systems like
electronics thermal management, thermoelectrics, solar cells,
high-temperature engineering, and so on. The common
materials descriptors for machine-learning thermophysical
properties of these materials are summarized in Figure 6.
Semiconductors. Semiconductors are materials with large

electrical conductivity tunability under field and the foundation
of our modern technologies, including computers, mobiles,
electric vehicles, robots, and everything with programmable
electrical circuits. For example, silicon, germanium, and gallium
arsenide are the most common semiconductors, while gallium
nitride and gallium oxide are rising stars. During the past
decades, the number of transistors per area on chips has been
doubled about every 2 years, famous as Moore’s law,
unintentionally introducing the thermal management challenge
due to the increased power density.99,100 Developing new
semiconductors with high thermal conductivity is the most
straightforward way to overcome the heat management
challenge and save a large amount of energy for device cooling.
On the other hand, semiconductors are the energy conversion
materials in solar cells and thermoelectric power generators,
where the bandgap, charge carrier lifetime, electrical con-

ductivity, Seebeck coefficient, thermal conductivity, and thermal
stability are the key properties. All these properties are
essentially determined by the atomic structures, regardless of
the defect and boundary effects, and can be predicted from ab
initio calculations with only lattice structure and atom types as
input, as illustrated in Figure 6. Computation-guided develop-
ment of new semiconductors can be best exemplified by boron
arsenide, which was experimentally synthesized with thermal
conductivity up to 1300 W/mK, 5 years later after the initial
motivation from ab initio calculations.4,15 ML approaches have
been recently applied to accelerate the computational prediction
process. Fast and accurate materials screening of different types
of semiconductors has been demonstrated with various ML
algorithms for both thermal conductors and thermal insu-
lators.101−103 The electronic properties of semiconductors,

Figure 6. Common materials descriptors for machine-learning
thermophysical properties of various materials, including semi-
conductors, polymers, alloys, and composites. Atomic information
is of paramount importance for materials with simple structure, like
semiconductors. Molecular information is indispensable for
evaluation of the properties of organic systems, like polymers. For
heterogeneous materials such as composites, the structural
information is critical to their apparent properties. The easy-to-
access properties, for instance sound velocity and Young’s modulus,
can be correlated with thermal properties for most materials.
Reprinted with permission from refs 19 and 34. Copyright 2021
Springer Nature and 2019 John Wiley & Sons.
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including bandgap and carrier mobility, can be efficiently
predicted with ML methods,104,105 which are critical to quickly
evaluate their potential applications in electronics, thermo-
electrics, and solar cells. Moreover, the dynamical evolution of
structure and properties of semiconductors under extreme
conditions can be modeled with ML-assisted atomistic
simulations, for example, the insulator-to-metal transition of
amorphous silicon under high pressure.106 Semiconductors in
solar cells have also benefited from ML methods, including the
accelerated search for stable, efficient, and eco-friendly perov-
skites.107−109 In addition, the manufacturing of semiconductors
is another area where ML has played a role for decades. By
training the process-to-product data set with decision-making
trees, the manufacturing parameters for semiconductors can be
optimized.110

Polymers. Polymers consist of macromolecules with huge
numbers of repetitions of monomers and have the highest
volume of manufacture in modern society due to their light
weight and low-cost advantages for packaging applications.111

The properties of polymers vary a lot with the atomic structure,
functional groups, and morphology, exemplified by the complex
functions of numerous proteins in biological system. The high-
dimensional structure−property relationship has been partially
learned by living beings during evolution and stored in our
genes, now waiting for explicit interpretation and smart
utilization with the help of ML.112,113 A recent breakthrough
is the successful prediction of protein folding with unprece-
dented accuracy by Deep Mind’s AlphaFold2.114 The major
challenge for polymer informatics comes from the coupling
between long-range, van derWaals, or Coulombic forces and the
complicated morphologies, resulting in countless hierarchical
materials descriptors from the atomic information on the
polymer units and the molecular information such as topological
polar surface area, ring numbers, and functional groups, to
structural information like alignment, twisting, branching, and
others. For example, Kim et al. constructed a platform for a
polymer genome using a collection of 229 polymer descriptors
and predicted the variation of properties over a large range, e.g.,
band gap from 0.7 to 10.2 eV and dielectric constant from 2.61
to 9.09.115 Polymers can also be encoded into sequences of
tokens regardless of their morphology, such as the simplified
molecular input line entry system,116,117 which is similar to the
genetic code system of life. The genetic algorithm could be a
powerful tool for predicting polymers’ properties and behaviors
in the future.118

The major limitations of polymers in thermal management
applications are the low thermal conductivity (usually ∼0.2 W/
mK) and relatively low melting temperature (usually less than
400 °C), partially due to the weak intermolecular interactions.
Additionally for thermal conductivity, due to the competition
between the conformational entropy and chemical potential,118

the structure of the polymer is much more disordered (than
crystals) and forbids the collective thermal transport of lattice
waves (phonons). Therefore, it is expected that improvement of
the polymer chain’s alignment can increase its thermal
conductivity,119,120 which had been experimentally verified by
mechanical stretching, electrical spinning, and other meth-
ods.121−123 The design of polymeric materials with dynamically
tunable and enhanced thermal conductivity can be the next
research opportunity in this area. In addition, the ML approach
may help search for polymers that are useful for organic
photovoltaic, radiative cooling, and other energy systems. For
instance, Sahu et al. learned the power conversion efficiency

from experimental results of 300 molecules using a gradient
boosting regression tree and ANN and applied theMLmodel to
screen 32 structures from ∼10 000 molecules in the Harvard
Clean Energy Project.124,125 The hierarchical structural
polymers are promising radiative cooling materials due to their
spectrally selective emission properties,126,127 which could be
optimized with ML in the future.
Alloys. Alloys are one type of important materials in high-

temperature machines such as turbines, engines, and boilers due
to their high mechanical strength and thermal stability. Alloys
also represent several top thermoelectric materials.20,128,129 The
current design of alloy systems usually relies on phase diagrams
to characterize the phase−composition relationships. Therefore,
multi-alloy systems, or high-entropy alloys, which are proposed
as single-phase multi-component alloys of five or more elements
in approximately equal proportions,130 and later to include
intermetallics, nanoprecipitation, ceramic compounds, and non-
equiatomic materials,131−133 have provided high-dimensional
composition and tenability.134 However, a complete exper-
imental scan of concentrations of more than 10 different
elements is challenging, severely impeding the construction of a
phase diagram of high-entropy alloys. Similar to semi-
conductors, the structural homogeneity of alloys enables
relatively clean and simple material descriptors for ML training,
mainly including atomic information and some easy-to-access
proproteins, especially the molar concentration of each
element.135 The Al-Ni-Zr glass-forming ability phase diagram
was predicted using the ML method with descriptors derived
from stoichiometric ratio, elemental property, orbital informa-
tion, and ionic bonding.136 The ANN was proven to have a test
accuracy of ∼75% for phase prediction of high-entropy alloys
with a training data set of 401 alloys.137 The calculation of phase
diagrams using thermodynamic theory, also known as
CALPHAD, is one of the widely used tools. CALPHAD gives
geometric descriptions of the system at thermal equilibrium,
which can further be used for compositional design. With the
development of various ML methods, researchers are able to
seek help from data science and try to use limited data and ML
algorithms to predict the alloy phase at any compositional
combination, which is essentially a classification problem. For
example, Zeng et al.138 combined CALPHAD calculations and
the XGBoost method to predict 213 new single-phase BCC and
FCC high-entropy alloys and established new high-fidelity phase
selection rules; Liu et al.139 integrated a support vector machine
with CALPHAD to quickly locate two new eutectic
compositions in Ni-Co-Cr-Al high-entropy alloy systems and
confirmed their designs by experiments. In addition to the phase
diagram prediction, other properties of alloys can also be
predicted from the stoichiometric ratio−properties relationships
trained from ML, including formation enthalpy, hardness,
toughness, thermal conductivity, electronic conductivity,
Seebeck coefficients, etc.107,140,141 The hardness of Al-Co-Cr-
Cu-Fe-Ni alloys can be calculated from aMLmodel trained with
experimental data using molar concentration and elemental
information as descriptors.142 The ML approach can also help
optimize the catalytic efficiency of high-entropy alloys for CO2
andCO reduction reactions by learning the results from ab initio
calculations.143 A more detailed discussion of ML-driven high-
entropy alloys studies can be found elsewhere.144

Composites. Composites are heterogeneous materials with
a wide range of energy applications, from thermal interface
materials19,145 to electrodes and electrolytes in batteries.146

Different from alloys, where the elements are soluble in the
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matrix, the component materials in composites are insoluble in
the matrix. The intrinsic properties of the component materials
are often known. The properties of composites are determined
by the percentage, shape, size, and arrangement of each
component, and sometimes the interface interaction between
them, as illustrated in Figure 6. For porous structures like
aerogels, the key descriptors are porosity, pore size, wall
thickness, pore arrangement, pore shape, and so on.38−40

Effective medium approximation was the most used tool to
predict the thermal conductivity of composites, but unsatisfied
due to the lack of consideration of the detailed fillers’ structures.
Finite element analysis of the heat diffusion equation is a
common tool to consider the exact structures of composites. For
instance, by including the shape, loading, and alignment of fillers
in the finite element analysis, Cui et al. illustrated the heat-
transfer mechanism of their boron arsenide/polymer thermal
interface composites with thermal conductivity up to 21 W/mK
and elastic compliance less than 100 kPa.19 However, the
rigorous numerical calculations based on finite element analysis,
lattice Boltzmann method, or others usually take too much time
for material design, which undoubtedly can benefit from the ML
approach to speed up the computations for composites. By
taking the structure−properties relationships from experiments
and/or rigorous numerical calculations, multiple algorithms
have been applied to learn the thermal conductivity of
composites, such as support vector regression, Gaussian
regression, and neural networks.45,46 In addition, ML methods
have also been applied to design functional composites for
thermal cloaking,147 energy storage,148,149 and additive
manufacturing.150

■ THERMOPHYSICAL PROPERTIES OF MATERIALS
The ideal performance of thermal energy systems is essentially
limited by keymaterials properties, such as thermal conductivity,
critical temperatures, emissivity, and so on. During the past 2
decades, numerous materials properties have been measured
and accumulated, especially computational results from different
simulation approaches. The ML methods start to manifest their
power in searching for materials with desired properties. In this
section, we will focus on the efforts and progress regarding ML
applications in the study of thermal stability, thermal
conductivity, thermal boundary resistance, thermal emission,
and thermoelectrics.
Thermal Stability. Thermal stability is a major consid-

eration for high-temperature applications, like thermal barrier
coating of turbines and sharp leading-edge materials of
hypersonic vehicles, and an important factor for the lifetime
and performance of most devices, also involved in the high-
throughput prediction of other physical properties as a
prerequisite screening process. Experimentally, the thermal
stability of materials is usually characterized by differential
scanning calorimetry and thermal gravimetric analysis, measur-
ing critical temperatures such as the phase change temperature
and decomposition temperature. However, in materials with
high-dimensional variations, like numbers of monomers and
conformational variations of organic materials and alloys with
multiple components, the complete measurement of overall
variable dimensions is almost impossible, leaving much space for
ML methods. Many molecular features can serve as descriptors
for ML training for organic materials, including molecular mass,
atom types, topological charge, and so on. For example, Zhao et
al. applied a light gradient boosting algorithm to construct a
prediction platform of the critical temperatures of organic light-

emitting materials using the existing experimental results of
1944 molecules and revealed that the hydrogen bonding,
molecular polarity, and size were the most important features for
these molecules’ thermal stability.151 Sifain et al. used a group of
group-constitutive and gradient boosting decision trees to
predict the melting temperature of over 47k organic
molecules.152 The other properties coupled with thermal
stability can also be analyzed with ML. Shen et al. studied the
stability of polymer dielectric materials at different temperatures
and electric fields using dielectric constant, electrical con-
ductivity, and Young’s modulus as descriptors and least-squares
regression.149 The light output degradation of Eu3+-substituted
phosphors with temperature can also be predicted using support
vector regression training of reported experimental data.153

Phase diagram construction of alloy systems traditionally
requires substantial experimental efforts along three dimensions,
i.e., temperature, pressure, and element concentration, which
can also be significantly reduced with ML. Balachandran et al.
accelerated the experimental search for high-temperature
ferroelectric perovskites by using classification learning methods
to identify the perovskite phase in the phase diagram and
regression methods to predict the Curie temperature, as
illustrated in Figure 7.154 On the other hand, the atomistic

modeling with MLPs helps reveal new fundamental insights on
the phase change ofmaterials, such as the discovery of a transient
phase during the amorphous-to-crystalline silicon transi-
tion.106,155

Thermal Conductivity. Thermal conductivity is a phenom-
enological metric defined by Fourier’s law to relate heat flux and
temperature gradient in a medium and is probably the most
important thermal transport property for thermal engineering.
As mentioned before, ab initio calculation of thermal
conductivity has been standardized as the most accurate
prediction method; however, it requires much computational
resources, only possible for case-by-case modeling but
formidable for an exhaustive search for thermal materials.
With the rise of ML algorithms, so-called high-throughput
thermal transport prediction has become popular during the past
decade, which can be hardly defined as more than a purpose
efficiently realized with the assistance of MLmethods, instead of
any specific workflow, framework, or even protocol.

The most straightforward strategy to integrate ML algorithms
into the prediction of thermal transport properties is to design
physically insightful descriptors and take advantage of the
existing database of materials’ properties as training data to
develop accurate and computational affordable correlations for
thermal conductivity. Early efforts using this strategy can be
represented by the Slack equation, which estimates thermal

Figure 7. Thermal stability prediction of perovskite crystals with
variable elements such as Mo, W, Nb, Ta, etc. and stoichiometric
ratios using classification learning and regression. Reprinted with
permission from ref 154. Copyright 2018 Springer Nature.
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conductivity from the atoms’ mass, Debye temperature,
Gruneisen number, bond length, and atom numbers in the
unit cell of materials.156 The physical understanding of thermal
transport plays a much heavier role than statistical analysis, and
the accessible descriptors were quite limited in the early
attempts. Nowadays, with the rapid growth of computing power,
more andmore calculations have been accumulated of materials’
properties such as formation enthalpy, bond strength, phonon
dispersion, and specific heat. Millions of material compounds
have been recorded on open databases like AFLOW, Materials
Project, NOMAD, and so on, making ML over a large volume of
input data possible together with the existing experimental
results, as shown in Figure 4. Carrete et al. predicted 10
promising low-thermal-conductivity half-Heusler semiconduc-
tors from 79 000 initial entries in the AFLOW database by
combining random forest regression and ab initio calculations of
32 compounds using a group of descriptors including chemical
information, compound information, and accessible thermal
information like specific heat and scattering phase space, as
shown in Figure 8.101 A similar approach was also performed
using different input data such as entries in Materials Projects
and different ML algorithms like Gaussian process regression,
random forest, transfer learning, and principal component
analysis to map thermal conductivity with different descriptor
sets.47,102,103,157,158 Different from inorganic crystals, the

descriptors for ML training of the thermal conductivity of
polymers are more complicated, for example, the vectors of
binary digits representing the chemical units. The search for
high-thermal-conductivity polymers is underway but far from
satisfactory considering the current progress.120,159 The thermal
conductivity of alloys can also be predicted by adding
composition as another dimension for ML training.160,161 In
addition, ML can also assist the ab initio calculations of thermal
conductivity, especially for high-temperature calculations, which
are usually much more computationally expensive than ab initio
calculation at 0 K. By performing principal component analysis
and regression analysis, a correlation between 0 K force
constants and 1000 K force constants can be built to accelerate
the phonon scattering calculations.48

In addition to homogeneous materials, the effects of
compositional and structural factors on thermal conductivity
can also be efficiently predicted with ML algorithms, mainly for
nanostructures, composites, and porous materials. By using
period and layer thickness as material descriptors and MD
simulation results as training data for ANN, the thermal
conductivity of superlattice can be minimized.162,163 The
thermal transport in a porous medium can be modeled with
the finite element method and heat diffusion equation once the
porous structure size is much larger than the heat carriers’ mean
free path. By training a limited data set of finite element method
simulation results with appropriate structural features like shape
and bottleneck thickness, the structure−thermal conductivity
relationship can be found.46 Similarly, the thermal conductivity
of composites can also be predicted from ML methods and
training data from finite element method simulations with
properties and geometric factors of fillers.45,164 When the grain
size or pore size approaches the heat carriers’ mean free path, the
solutions to BTEs are obtained first as training data.165 Thermal
resistance at the interface in heterogeneous materials is another
important consideration, which will be discussed later.
Thermal Transport Physics. ML methods can also be

applied to study fundamental thermal transport physics.
Hydrodynamic phonon transport is a heat-transfer regime
much less studied than ballistic and diffusive heat conduction,
existing only in limited materials at appropriate temperature
windows. Torres et al. determined promising materials for
hydrodynamic thermal transport by training the ab initio
calculated hydrodynamic length of 131 materials using neural
networks.82 Thermal transport in amorphous materials is
another long-standing problem due to the complicated
structures with short-range, medium-range, and long-range
disorders. Ab initio modeling of amorphous materials is
extremely challenging because of the lack of symmetry. MLPs
from ab initio calculation of small systems (less than 1000
atoms) can be used for MD simulations of large systems (more
than 10 000 atoms), approximating the real amorphous
structure.80,88,166 On the other hand, the thermal transport of
materials such as zirconium compounds at high temperatures
can also be modeled with MLPs.72,167,168 Otherwise, the ab
initio calculation of high-order force constants to include
anharmonicity requires too many computational resources.
Thermal Boundary Resistance. Thermal resistance is not

only contributed by the intrinsic thermal properties of
component materials but also contributed by their interfaces,
especially in heterogeneous structures, known as thermal
boundary resistance (TBR).169 TBR is a decisive factor in the
performance failure of high-power electronics, the efficiency of
nanostructured thermoelectric materials, and the thermal

The most straightforward strategy to
integrate machine-learning algorithms
into the prediction of thermal transport
properties is to design physically
insightful descriptors and take advant-
age of the existing database of
materials’ properties as training data to
develop accurate and computationally
affordable correlations for thermal
conductivity.

Figure 8. High-throughput, low-thermal-conductivity half-Heusler
semiconductors discovery from 79 000 initial entries in the AFLOW
database by combining random forest regression and ab initio
calculations. Reprinted with permission from ref 101. Copyright
2014 American Physical Society.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Focus Review

https://doi.org/10.1021/acsenergylett.2c01836
ACS Energy Lett. 2022, 7, 3204−3226

3213

https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig8&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c01836?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


properties of composites, to name a few. TBR results from the
breakdown of coherent vibrational waves at the interface. The
physical process can be pictured as wave transmission and
reflection, as illustrated in Figure 9a and mathematically

described by the Laudaur formula.145,170 Due to the lack of
symmetry at the interface, the modeling of TBR requires a large
atomic system, making first-principles calculations computa-
tionally challenging, compared to the widely used methods such
as acoustic mismatch models, diffuse mismatch models, and
molecular dynamics simulations.145 On the other hand, classical
MD simulation is an ideal approach to deal with interface
thermal transport by modeling the exact interface structure,
defects, and anharmonicity, though the output mainly relies on
the accuracy of empirical potentials. One of the major examples
of progress comes from the MD simulations with MLPs, which
provides a balance between modeling accuracy and cost. For
example, Kang et al. constructed a potential for boron arsenide
by training the force and energy data from DFT calculations
using linear regression and calculated the TBR between boron
arsenide and gallium nitride, which was in good agreement with
their experimental measurements, as shown in Figure 9b.18

Following their work, Wu et al. applied the deep-learning
method to build another potential to study the thermal transport
of this heterostructure.171 A similar approach was also applied to
the thermal resistance at the grain boundary of silicon and hence
the thermal conductivity of polycrystalline silicon.172

On the other hand, the high throughput of TBR is also under
development and has already achieved better prediction
accuracy at least than mismatch models. Since phonon waves’
transmission is related to the intrinsic phonon properties of

interface materials, multiple physical properties can serve as
descriptors for ML training of TBR data, such as specific heat,
thermal conductivity, Debye temperature, melting temperature,
sound speed, bulk modules, and so on. Wu et al. used these
descriptors and three different ML algorithms�regression tree
ensembles of LSBoost, support vector machines, and Gaussian
regression process�to train 1317 data entries from exper-
imental measurements and achieved coefficients of determi-
nation around 0.9.44 Even for the same pair of interface
materials, ML can also be applied to study the dependence of
interface conditions such as temperature, defects, bonding
strength, etc. Vu et al. constructed the mapping between the
TBR of a glass/steel interface and descriptors including
temperature, pressure, and surface roughness by using linear
regression, decision tree, and random forest algorithm to train
their own experimental results and achieved a coefficient of
determination up to 0.99, as illustrated in Figure 9c.173 In
addition, ML algorithms can also be combined with classical
MD simulations to accelerate the optimization of fine structure
at the interface for thermal transport.174−176

Thermal Emission. The emission and absorption of
electromagnetic waves is one of major ways heat is exchanged,
called radiative heat transfer. Any object above 0 K is emitting
electromagnetic waves due to the movement of charge carriers.
Thermal emission is extremely important for high-temperature
objects and objects without direct contact, for example, our
Earth and sun, between which thermal energy is transferred only
through radiative heat transfer. The control of thermal emission
properties is critical to various applications including daytime
radiative cooling, thermophotovoltaics, metallurgy, turbines,
and others. During the past 2 decades, nanostructure engineer-
ing of surfaces has opened up new directions for light−matter
interactions, i.e., emissivity control with metasurfaces.177,178

However, the spectral dependence of emissivity and temper-
ature dependence of electromagnetic waves’ emission compli-
cate the inverse design of metasurfaces. Although the emissivity
of metasurfaces can be precisely calculated with the Maxwell
equation, it requires substantial efforts to scan different material
properties and geometrical parameters to achieve desired
thermal emission properties. For example, the emissivity of the
pillar structure illustrated in Figure 10 can be affected by the
height, period, shape, length, and width of the pillars. This high-
dimensional problem can also be addressed with ML methods.
Instead of solving Maxwell equations case by case, the
structure−property mapping can be established more efficiently
by training a limited data set from rigorous calculations. For

Figure 9. Prediction of thermal boundary resistance by using linear
regression, decision tree, random forest algorithm, and machine-
learning potential-driven molecular dynamics simulations. Re-
printed with permission from refs 18 and 173. Copyright 2021
Elsevier and 2021 Springer Nature.

Figure 10. Inverse design of emissivity of materials by machine
learning the structure−property mapping from a training data set of
rigorous calculation results of Maxwell equations using artificial
neural networks. Reprinted with permission from ref 179. Copyright
2018 American Association for the Advancement of Science.
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instance, the light scattering of core−shell nanoparticles can be
tuned by changing the thickness of each shell and shell material.
Peurifoy et al. applied ANN to train 50 000 rigorous calculation
results from Maxwell equations and reduced the inverse design
time by up to 2 orders,179 as shown in Figure 10. Dielectric and
metallic particles with different shapes like spheres, cylinders,
parallelepipeds, and triangular prisms were also studied with
decision trees and random forests to address the inverse design
of emissivity.180 The narrow-band thermal emitters with a
quality factor higher than 200 are promising for high-
performance thermophotovoltaic devices, making it possible
to convert the broad-band solar spectrum to narrow-band light,
where the photovoltaic cells have the maximum effi-
ciency.181−183 Additionally, beyond the optimization of geo-
metric parameters, it is also expected that the emerging ML
approaches could be built on high-fidelity fundamental results,
i.e., a database of ab initio calculations, to further enhance
modeling capability by having a larger design space with much
cheaper computational cost. Since ML methods have just been
introduced to the thermal radiation, photonics, and plasmonics
communities, relevant research is still deficient in the
literature.184

Thermoelectrics. Thermal energy can also be directly
converted into electricity via thermoelectric effects due to
thediffusion of charger carriers under a temperature gradient.
Thermoelectric devices are regarded as ideal power generators
without complicated mechanical components and moving parts,
though they are significantly limited by the low energy
conversion efficiency, which can be characterized with a ZT
value, ZT = σS2T/κ, where σ, S, κ, and T are electrical
conductivity, Seebeck coefficient, thermal conductivity, and
temperature, respectively. The maximum efficiency of a
thermoelectric generator working between 300 and 400 K
heat reservoirs is 4.7% and 11.3% with ZT values of 1 and 5,
respectively .185 The state-of-the-art ZT value had remained less
than 1 for more than 50 years until the nanoengineering of
material structures was introduced,8,20,186 opening up new
directions for improving thermoelectric performance. With the
new hope accompanies new challenges, i.e., searching for
optimal materials with additional dimensions, such as impurity,
doping, grain boundary, and so on, especially considering the
modeling complexity of electron and phonon transport in
nanostructures. ML tools have been applied to speed up the
search for high-performance thermoelectric materials, either by
guiding the exploration of σ, s, and κ values separately or the
overall ZT value.104 For instance, the electronic band structure
and lattice thermal conductivity of half-Heusler compounds
were analyzed with ML separately.101,105 The selection criteria
(large lattice parameter and effective mass of holes) for high-ZT
half-Heusler thermoelectric materials were identified by Carrete
et al. by analyzing their ab initio calculation results from 75
compounds using decision trees.187 However, the family of
thermoelectric materials is huge, as illustrated in Figure 11,
requiring more general material descriptors for ZT values, either
physics-inspired or data-driven.188,189 Xu et al. applied the
random forest method to train thermoelectric data from 204
materials and obtained coefficients of determination higher than
0.9 by using four descriptors from the information entropy
evaluation of an ExtraTree-based model.189 Some better
descriptors could be found from the several visualization
databases for properties relevant to thermoelectrics.190−192

Moreover, structural design and material manufacturing

methods such as chemical mixing and thermal processing can
also be optimized with ML.193−195

■ PERFORMANCE PREDICTION AND DESIGN
OPTIMIZATION OF THERMAL ENERGY
APPLICATIONS

Beyond mechanistic modeling and high-throughput searching
for materials’ properties as discussed in the above section, ML
can also assist the design of architectures and performance,
ranging from thermal devices to large-scale systems, which we
exemplify in Figures 12 and 13, below.
Device Level. On the level of thermal device optimization,

ML methods could provide advantages for a broad range of
applications, including thermophotovoltaics, thermal desalina-
tion, heat pumps, heat exchangers, solar water heaters, steam
turbines, additive manufacturing, etc. Recent works employ
various ML models to tune multiple geometric and physical
parameters in a way to comprehensively search in hyper-
dimensional design space, which is generally restrained by the
formidable computational cost of conventional manual sweep.
Numerous discoveries of unorthodox practical structures away
from previous intuition and prior selected topologies have been
made via computer algorithms, and these ML approaches are
expected to play a vital role for device optimization in the future.
For this review, we highlight this progress by focusing on three
typical devices involving thermal energy, i.e., heat exchangers,
thermophotovoltaics, and solar water heaters.

Several commonly used heat exchangers have been optimized
using ML algorithms. The input parameters for these heat

Figure 11. Evaluation of thermoelectric properties can be
accelerated with machine learning by selecting good material
descriptors, including but not limited to the average atomic mass
and standard deviation of Pauling electronegativity. Reprinted with
permission from ref 188. Copyright 2015 Royal Society of
Chemistry.

Numerous discoveries of unorthodox
practical structures away from previous
intuition and prior selected topologies
have been made via computer algo-
rithms, and these machine-learning
approaches are expected to play a vital
role for device optimization in the
future.
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exchangers generally include total tube number, total baffle
number, baffle pitch, diameter of the center tube, flow rate,
Reynolds number, inlet and outlet temperatures, fin dimensions,
fin spacing, materials, etc., and the objectives are performance
prediction, efficiency (and effectiveness, if applicable), and
economical optimization.
Specifically, an early-day investigation on fin tube heat

exchangers using ML was initiated by Zhao et al.,198 where
they introduced ANN to the prediction of the performance of
heat exchangers. The ANN model they trained based on a very
limited amount of experimental data showed the prediction of
heat rate with error in the same order as the uncertainty of the
measurements under different operating conditions. Pacheco-
Vega et al. later considered condensation in their ANNmodel in
the case of humid-air flow and demonstrated better performance
than conventional correlations.199 The promising prediction
capability paved the way for further optimization along the map
of ML. Besides ANN, Peng et al. used support vector regression
with different hyperparameters for predicting the thermal-
hydraulic performance of fin tube heat exchangers and claimed
better prediction performance than using ANN with shorter
computational time.200 As prediction becomes more accurate,
design optimization based on these approaches appears
naturally. Recently, Krishnayatra et al. studied the thermal
performance of fins for a novel axial fin-tube heat exchanger
invoking k-nearest neighbor regression, and the designed
structure shows high efficiency, confirmed by numerical
simulations of ANSYS.201 To take into account total cost on
top of heat-transfer effectiveness, Xie et al. used a genetic
algorithm for minimization of total annual cost and total
weight.202 By combing a genetic algorithm design and additive
manufacturing, Moon et al. fabricated a heat exchanger with
optimal fin geometry and achieved a power density of 26.6 W/
cm3, as shown in Figure 12b.196

On the other hand, based on a small set of experimental data
on shell-tube heat exchangers, Luo et al. trained ANN using
normal backpropagation and different architectures for the
prediction of heat-transfer rates in segmental baffles and
continuous helical baffles.203 Their results show a better
prediction of heat-transfer rate than empirical correlations,
which is the preliminary stage for ML-enabled optimization.
Thanikodi et al. furthered their methods by incorporating
teaching learning (dividing training data into a few chunks and
using in order) to make a hybrid ANN based on the same set of
training data and confirmed reduced learning error.204 More
than ANN, Krzywanski developed an ML model using a genetic
algorithm and ANN on a large falling-film evaporator and
optimized the heat exchanger regarding the total heat-transfer
rate by tuning the kind of tubes and tube pass arrangements
under the specific number of tube rows and the refrigerant mass
flow rate.205 Ocłon ́ et al. invoked particle swarm optimization
and continuous genetic algorithms for optimizing flow
distribution and effectively reducing thermal stresses.206

Explorations in flat-tube multi-louvered fin compact heat
exchangers,207 plate-fin heat exchangers,208 and wavy fin-and-
elliptical tube heat exchangers209 are also documented in the
literature.
As for thermophotovoltaic applications, Kudyshev et al.

optimized a metasurface thermal emitter by adapting the
topology optimization method with deep-learning algorithms
(i.e., adversarial autoencoders) for unorthodox compact hyper-
parametric representations and showed substantial improve-
ment in the optimization process, 3 times faster with higher

efficiency (98%) than previously used adjoint-based topology
optimization design as shown in Figure 12c.182,210 Zhang et al.
demonstrated that a highly selective aperiodic thermal emitter
made of silicon, silica, and tungsten can be achieved under the
framework of Bayesian optimization and a transfer matrix
method.211 Integrated with a gallium antimonide (GaSb)
photovoltaic cell, such an optimal emitter is fabricated, and
the measured emission spectrum shows agreement with the
predicted figure of merit, notably better than previously
designed multi-layers with similar material. Silva-Oelker et al.
explored two structures (a planar multi-layer stack and a grating)
of tungsten−hafnia (W-HfO2) selective thermal emitters with
high hemispherical emittance.212 Through optimization using a
genetic algorithm and rigorous coupled wave analysis, the design
of high thermal emittance with low directional sensitivity can be
obtained. On top of genetic algorithms and adversarial
autoencoder networks which require large data sets and are
based on exploitation only, particle swarm optimization that also
includes exploration was proposed by Wang et al.213 They
optimized solar-to-power conversion efficiency for multi-layer
solar thermal absorber made of tungsten, SiO2 and Si3N4 multi-
layer thin films by theoretical design and experimentally
demonstrated excellent spectral selectivity.
With regard to solar heaters, Kalogirou et al. first used ANN to

predict useful energy extracted from domestic hot water
systems,214 instantaneous efficiency,215 and temperature
level216 for the storage tank by the end of the daily operation
cycle. Lecoeuche et al. then used ANN to predict in situ outlet
temperature of the collector based on solar radiation and
thermal heat loss coefficients.217 However, accurate determi-
nation of heat collection rate and heat loss coefficients is difficult.
Liu et al. proposed using ANN and a support vector machine to

Figure 12. Machine-learning applications in performance prediction
and design optimization at the device levels, mainly including heat
exchanger, thermal emitter, and heat collector. Reprinted with
permission from refs 196, 182, and 197, respectively. Copyright
2021 Elsevier, 2020 AIP Publishing, and 2015 Multidisciplinary
Digital Publishing Institute.
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predict these two quantities based on portable instrument
measurable parameters and improved their prediction accuracy
of heat loss coefficients with an extreme learning algorithm, as
shown in Figure 12d.197 Afterward, Liu et al. applied ANN-
driven high-throughput screening for designing a promising
water-in-glass evacuated tube solar water heater (WGET-SWH)
with a high heat conduction rate using billions of combinations
of extrinsic properties (tube length, tube numbers, center
distance, tank volume, collector area, final temperature, tilt
angle).218 Two novel designs generated by this approach were
installed experimentally for validation and showed higher
average heat collection rates than all existing cases in the
previous measurement database. Li et al. then presented the
predictive power of ML methods and generalized an ANN-
based high-throughput screening framework by providing vital
details about the modeling and high-throughput screening
process.219 The success of designing a new SWHwith optimized
performance without knowing the complicated physical
relationship between SWH settings and target performance is
highlighted.
System Level. In addition to material structure and device

configuration, ML methods can also be applied at system level
for a variety of purposes, including, to name a few, energy
demand forecast, fault detection, and optimal control and
scheduling of a system. Here we draw attention to ML
applications in the modulation of district heating networks
and indoor HVAC systems.
District heating is a widely used way to transmit thermal

energy in the form of hot water or hot steam to end users (i.e.,
households, offices, shops, industry, etc.), which can be further
employed for heating and hot water production. Central energy
plants and multiple buildings in a district heating system are
connected through miles of insulated underground pipes where
the thermal energy carrier is distributed. It becomes popular in
major cities due to its low overall economic cost and high energy
efficiency. However, the long delivery distance and long delay
time from producer to consumer are inherent problems for such
a large transmission system. The decision to change the
transmission status may come hours later than the relevant
report is made. Some forms of forecast and prediction must be
made, which currently are based on statistical knowledge and
experience. Accurate demand prediction can help utilities to
plan and shield against uncertainties. ML comes into the picture
given its potential for high-fidelity forecast on energy demand. If
a prediction can be made far in advance, then the exact amount
of thermal energy can be transferred to the users after some
distribution time. However, the prediction of energy load is not
simple. It invokes not only weather conditions (temperature,
dew points, solar radiation, wind speeds, etc.) but also social
behaviors. Ordinary systems that only monitor the current state
of the system fail to take into account the historical records and
possible future events. The application of ML, on the other
hand, exhibits potential for high-accuracy energy load prediction
and further leads to the complete digitalization of tomorrow’s
district heating systems. ML methods can learn the patterns of
heating load from a large database consisting of previous
customer data, operational data, and holiday activities as well as
weather reports, and thus are able to schedule the heat
production and storage dynamics in advance and correspond
to evolving conditions (uncertainties in weather forecasts and
human behaviors) so as to handle peak load properly. Even
economic data, such as prices of electricity, natural gas, and
other sustainable resources, can be integrated into the whole

analysis to achieve higher efficiency at a broader scope. The first
work invoking ML for energy load prediction was done by
Dotzauer et al., who developed a simple heat demand prediction
model by considering outdoor temperature and human
activities.220 As the computational power improves, many ML
models have been proposed for the sake of energy load
prediction, such as online ML algorithms,221 ensembles of
online ML algorithms,222 ridge regression,223 support vector
machines,223 random forest,223 ANN,224 linear regression,224

etc. Deep-learning methods,225 which are extended from ANN
and capable of modeling complex nonlinearity, are becoming
attractive and have been tested many times. Xue et al.
investigated heat prediction using a long short-term memory
model and feature fusion long short-term memory,226 which
outperformed othermodels. A recursive strategy embedded with
extreme gradient boosting for multi-step-ahead forecasting of
the heat load is also highlighted in Figure 13.227

ML methods can be used to design optimal structures of
transmit networks. Feng et al. used a genetic algorithm to
optimize the structural design of the pipeline of a district heating
system, with the objective of minimizing annual total cost but
maintaining hydraulic stability.228 Similarly, Li et al. further
included a variety of heating and cooling loads throughout a year
and employed a genetic algorithm based on a least-annualized-
cost global optimal mathematical model for a design that could
avoid hydraulic unbalance, resulting in increased running
efficiency and reduced operation cost compared with conven-
tional design methods.229 ML can also help with fault detection
(i.e., leakage, insufficient heating, malfunction of individual
components) in streaming data. Such diagnosis can be achieved
from retrieved real-time customer data and other data from the
network, replacing manual inspection and reducing the time
needed between fault detection and repair. Given the universally
reported fact that no single anomaly detector that is ultimately
superior in all cases exists, Calikus et al. proposed a framework
integrating separate unsupervised components that address the
fundamental tasks as separate concerns.230 Unlike unsupervised
methods, Bode et al. created supervised models and studied the
transferability from an experimental training data set to a real-
world building test data set.231 Abghari et al. further proposed a
robust higher order mining approach to detect deviating and
sub-optimal operational behaviors.232 To build a predictive
model for pipe deterioration, Winkler et al. found that a boosted
decision tree approach with random under-sampling enables
higher precision extrapolation for the prediction of current and

Figure 13. Machine-learning applications in performance prediction
at the system level, mainly including the energy demand forecast,
fault detection, and in situ control. Reprinted with permission from
ref 227. Copyright 2019 Elsevier.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Focus Review

https://doi.org/10.1021/acsenergylett.2c01836
ACS Energy Lett. 2022, 7, 3204−3226

3217

https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acsenergylett.2c01836?fig=fig13&ref=pdf
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c01836?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


future states of the pipe network.233 What’s more, ML methods
can satisfy the need for the development of intelligent
monitoring and control frameworks for district heating systems.
Current control systems are primarily based onmanual tuning of
network operators using conventional proportional-integral-
derivative (PID) controllers, and thus automation is needed to
avoid human errors and guarantee optimal management with
reduced cost. Static models not capturing the time evolution of
energy vectors are commonly used for control. To overcome the
shortcoming of static optimization models, Moustakidis et al.
proposed a hierarchical control framework that breaks the
overall decision problem down to sub-problems using multiple
decision layers: the high-level layer deals with tactical decisions
and seasonally/monthly/daily load changes; the middle-level
layer is responsible for the slow time scale adjustment of the
continuous variables at production sites; and the lower layer
handles the fast time scale regulation of the aforementioned
continuous variables at the substation/building level.234

Reynolds et al. built up optimal scheduling of distributing heat
subsystems using genetic algorithms and found a 44.88%
increase in profit compared with a rule-based conventional
priority order scheme.235 A multi-stage−multi-level ANN with
three different variants has also been implemented by Arat et al.
for optimum control strategy of a geothermal heat-pump-aided
distributing heat system and yielded improved efficiency.236

HVAC is another area where ML applications make a crucial
difference. It is responsible for continuous regulation of the
artificial environment so that the indoor climate remains
constantly comfortable while the outside weather changes. In
recent years, the concept of smart buildings contingent on
building automation has arisen. In accordance with the fast
evolution of AI and ML techniques, smart buildings are further
advanced with systems capable of predicting, monitoring, and
adjusting in response to the dynamics of outside variables.
Energy demand prediction is the essential foundation for

building energy management and can be enhanced by
employing various ML methods. Specifically, supervised ML
algorithms, such as ANN,237 support vector machines,238

decision trees,239 and ensemble learning,240,241 are widely used
to forecast building heating/cooling load and total energy
consumption load. Numerous test results showed improved
accuracy better than simulation software results. However, these
methods are usually built on shallow structures and thus cannot
extract highly complex patterns from training data. That is why
deep-learning approaches, which feature multiple layers of
structures and thus a higher order of sophistication, are
proposed to learn greater abstraction and render higher accuracy
of prediction. Berriel et al. showed solutions of deep-learning
algorithms, such as convolutional and short-term memory
neural networks, that were applied to the problem of monthly
energy consumption forecasts and outperformed the baseline
reference of historical average consumption.242 Deep-learning
models combined with ensemble techniques,243 generative
adversarial nets,244−246 sequence-to-sequence models,247 and
transfer-learning models248 have also been explored. Recently,
to couple prediction with actuation, deep learning has further
been devised to connect with reinforcement learning to become
so-called deep reinforcement learning (DRL),249−251 which
encapsulates the perceptual power of deep learning and the
decision-making capability of reinforcement learning. DRL
controllers are proposed for optimally controlling space heating
to achieve low-exergy buildings. Liu et al. compared three
commonly used DRL techniques with popular supervised

models and concluded that DRL can improve prediction
performance with the cost of more computation time.252

In addition, ML helps detect and diagnose faulty operations
and equipment (i.e., water valves, air dampers, filters, chillers,
pumps, and fans) failures that often remain undiscovered for a
long period due to the difficulty of manually deciphering
complex information in building management systems. By
analyzing the trends of data collected by sensors, statistical ML
methods can deliver high-accuracy detection for complex
systems and be easily transferred to different systems, over-
coming the limitations in existing rule-based physical models.
West et al. proposed a novel fault detection and diagnosis
technique using hidden Markov models embedded with inter-
sensor relationships from historical data under normal and faulty
conditions.253 The comparison between real-time data stream
and learned historical patterns yields accurate operation
diagnosis for a few fault types in a real building. Later in the
past decade, various aspects of ML methods were intensely
explored to characterize occurrences of faults, detect abnormal
operating conditions, and classify fault types, such as adaptive
thresholds, using t-statistic approach,254 fuzzy logic,255 ANN,256

Gaussian process regression,257 support vector machine,258,259

gradient boosting regression,260 and generative adversarial
network.261 However, these methods rarely captured temporal
dependencies and dynamics of faults. To close such a loophole,
deep recurrent ANNs, which can also learn implicit nonlinear
relationships, are proposed. Topology optimization among
diverse deep recurrent ANN configurations and relevant
hyperparameters have been explored.262−264 The improved
effectiveness and advantages of deep recurrent ANN compared
to other non-recursive methods, namely higher accuracy,
transparency to substantial noise, and incorporating time
dependency, have been reported.265

Moreover, ML methods, especially DRL, enable automatic
smart adjustments with continuous sensor readings and actuator
controls. Gupta et al. introduced DRL heating controllers to a
simulation model of a house to remove deviation of the indoor
temperature from a set point to ensure thermal comfort while
reducing energy consumption under dynamic conditions.266

Brandi et al. implemented both static and dynamic DRL to
control supply water temperature for heating units, and they
both outperformed rule-based and climatic-based control
schemes, given a careful selection of input variables.267

Rahimpour et al. demonstrated the superiority of actor−critic
DRL methods on tuning buildings with phase change materials
whose nonlinearities cannot be handled by conventional
controllers.268 Beyond temperature control, Yoon and Moon
considered optimizing relative humidity,269 whereas Chen et al.
further included natural ventilation.270 Zou et al. devised a
framework to optimally control air handling units using DRL
with a training environment of long short-termmemory network
approximation for historical building automation system
data.271

During the past several years, the explosion of big data
toolboxes and the urgent need for efficient and clean energy
technologies have opened up a new interdisciplinary area
focused on ML-assisted energy materials development, thermal
device design, optimization, and operational improvement of
energy systems. At the most fundamental level, atomistic
modeling of thermal energy materials can benefit from the ML-
accelerated numerical solution of quantum mechanics and
highly accurate MLP-assisted MD simulations. High-through-
put material discovery for ideal thermal conductivity, thermo-
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electric coefficient, emissivity, and other properties will largely
reduce the cost of the traditional trial-and-error process. At the
mesoscale, the transport dynamics of electrons and phonons can
be more efficiently addressed. Inverse design of functional
materials with desirable properties by combing nanoengineering
and ML training of existing experimental and modeling data
becomes possible. Automated design of thermal devices with
ML and additive manufacturing will become a new industrial
strategy. Moreover, the large thermal systems will be operated
more efficiently byML-improved energy demand forecasts, fault
detection, and optimal control and scheduling. We expect that
ML can find its future opportunities in different directions,
including but not limited to computationally efficient first-
principles materials modeling, materials with extreme thermal
transport properties and high energy conversion efficiency,
novel thermal materials, or devices with variable thermophysical
properties, operation, and control of distributed energy systems.
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Green, T.; Qin, C.; Žídek, A.; Nelson, A. W. R.; Bridgland, A.; et al.
Improved Protein Structure Prediction Using Potentials from Deep
Learning. Nature 2020, 577, 706−710.
(115) Kim, C.; Chandrasekaran, A.; Huan, T. D.; Das, D.; Ramprasad,
R. Polymer Genome: A Data-Powered Polymer Informatics Platform
for Property Predictions. J. Phys. Chem. C 2018, 122, 17575−17585.
(116) Weininger, D. SMILES, a Chemical Language and Information
System. 1. Introduction to Methodology and Encoding Rules. J. Chem.
Inf. Comput. Sci. 1988, 28, 31−36.
(117) Weininger, D.; Weininger, A.; Weininger, J. L. SMILES. 2.
Algorithm for Generation of Unique SMILES Notation. J. Chem. Inf.
Comput. Sci. 1989, 29, 97−101.
(118) Kim, C.; Batra, R.; Chen, L.; Tran, H.; Ramprasad, R. Polymer
Design Using Genetic Algorithm and Machine Learning. Comput.
Mater. Sci. 2021, 186, 110067.
(119) Henry, A.; Chen, G. High Thermal Conductivity of Single
Polyethylene Chains UsingMolecular Dynamics Simulations. Phys. Rev.
Lett. 2008, 101, 235502.
(120) Zhu, M.-X.; Song, H.-G.; Yu, Q.-C.; Chen, J.-M.; Zhang, H.-Y.
Machine-Learning-Driven Discovery of Polymers Molecular Structures
with High Thermal Conductivity. Int. J. Heat Mass Transfer 2020, 162,
120381.
(121) Shen, S.; Henry, A.; Tong, J.; Zheng, R.; Chen, G. Polyethylene
Nanofibres with Very High Thermal Conductivities. Nat. Nanotechnol.
2010, 5, 251−255.
(122) Xu, Y.; Kraemer, D.; Song, B.; Jiang, Z.; Zhou, J.; Loomis, J.;
Wang, J.; Li, M.; Ghasemi, H.; Huang, X.; et al. Nanostructured

Polymer Films with Metal-like Thermal Conductivity. Nat. Commun.
2019, 10, 1771.
(123) Ma, J.; Zhang, Q.; Mayo, A.; Ni, Z.; Yi, H.; Chen, Y.; Mu, R.;
Bellan, L. M.; Li, D. Thermal Conductivity of Electrospun Polyethylene
Nanofibers. Nanoscale 2015, 7, 16899−16908.
(124) Sahu, H.; Yang, F.; Ye, X.; Ma, J.; Fang, W.; Ma, H. Designing
Promising Molecules for Organic Solar Cells via Machine Learning
Assisted Virtual Screening. J. Mater. Chem. A 2019, 7, 17480−17488.
(125) Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; Amador-
Bedolla, C.; Sánchez-Carrera, R. S.; Gold-Parker, A.; Vogt, L.;
Brockway, A. M.; Aspuru-Guzik, A. The Harvard Clean Energy Project:
Large-Scale Computational Screening and Design of Organic Photo-
voltaics on the World Community Grid. J. Phys. Chem. Lett. 2011, 2,
2241−2251.
(126) Mandal, J.; Fu, Y.; Overvig, A. C.; Jia, M.; Sun, K.; Shi, N. N.;
Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically Porous Polymer
Coatings for Highly Efficient Passive Daytime Radiative Cooling.
Science 2018, 362, 315−319.
(127)Wang, T.; Wu, Y.; Shi, L.; Hu, X.; Chen, M.; Wu, L. A Structural
Polymer for Highly Efficient All-Day Passive Radiative Cooling. Nat.
Commun. 2021, 12, 365.
(128) Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J.
Convergence of Electronic Bands for High Performance Bulk
Thermoelectrics. Nature 2011, 473, 66−69.
(129) Joshi, G.; Lee, H.; Lan, Y.; Wang, X.; Zhu, G.; Wang, D.; Gould,
R. W.; Cuff, D. C.; Tang, M. Y.; Dresselhaus, M. S.; Chen, G.; Ren, Z.
Enhanced Thermoelectric Figure-of-Merit in Nanostructured p-Type
Silicon Germanium Bulk Alloys. Nano Lett. 2008, 8, 4670−4674.
(130) Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B.
Microstructural Development in Equiatomic Multicomponent Alloys.
Mater. Sci. Eng.: A 2004, 375, 213−218.
(131) Senkov, O. N.;Wilks, G. B.; Miracle, D. B.; Chuang, C. P.; Liaw,
P. K. Refractory High-Entropy Alloys. Intermetallics (Barking) 2010, 18,
1758−1765.
(132) Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.;
Liaw, P. K.; Lu, Z. P. Microstructures and Properties of High-Entropy
Alloys. Prog. Mater. Sci. 2014, 61, 1−93.
(133) Yang, M.; Yan, D.; Yuan, F.; Jiang, P.; Ma, E.; Wu, X.
Dynamically Reinforced Heterogeneous Grain Structure Prolongs
Ductility in a Medium-Entropy Alloy with Gigapascal Yield Strength.
Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 7224−7229.
(134) Yao, Y.; Huang, Z.; Hughes, L. A.; Gao, J.; Li, T.; Morris, D.;
Zeltmann, S. E.; Savitzky, B. H.; Ophus, C.; Finfrock, Y. Z.; et al.
Extreme Mixing in Nanoscale Transition Metal Alloys. Matter 2021, 4,
2340−2353.
(135) Zhang, Y.; Wen, C.; Wang, C.; Antonov, S.; Xue, D.; Bai, Y.; Su,
Y. Phase Prediction in High Entropy Alloys with a Rational Selection of
Materials Descriptors andMachine LearningModels. Acta Mater. 2020,
185, 528−539.
(136)Ward, L.; Agrawal, A.; Choudhary, A.;Wolverton, C. AGeneral-
Purpose Machine Learning Framework for Predicting Properties of
Inorganic Materials. npj Comput. Mater. 2016, 2, 16028.
(137) Huang, W.; Martin, P.; Zhuang, H. L. Machine-Learning Phase
Prediction of High-Entropy Alloys. Acta Mater. 2019, 169, 225−236.
(138) Zeng, Y.; Man, M.; Bai, K.; Zhang, Y.-W. Revealing High-
Fidelity Phase Selection Rules for High Entropy Alloys: A Combined
CALPHAD and Machine Learning Study. Mater. Design 2021, 202,
109532.
(139) Liu, F.; Xiao, X.; Huang, L.; Tan, L.; Liu, Y. Design of NiCoCrAl
Eutectic High Entropy Alloys by Combining Machine Learning with
CALPHAD Method. Mater. Today Commun. 2022, 30, 103172.
(140) Hart, G. L. W.; Curtarolo, S.; Massalski, T. B.; Levy, O.
Comprehensive Search for New Phases and Compounds in Binary
Alloy Systems Based on Platinum-Group Metals, Using a Computa-
tional First-Principles Approach. Phys. Rev. X 2013, 3, 041035.
(141) Sarker, P.; Harrington, T.; Toher, C.; Oses, C.; Samiee, M.;
Maria, J.-P.; Brenner, D. W.; Vecchio, K. S.; Curtarolo, S. High-Entropy
High-Hardness Metal Carbides Discovered by Entropy Descriptors.
Nat. Commun. 2018, 9, 4980.

ACS Energy Letters http://pubs.acs.org/journal/aelccp Focus Review

https://doi.org/10.1021/acsenergylett.2c01836
ACS Energy Lett. 2022, 7, 3204−3226

3222

https://doi.org/10.1103/PhysRevX.4.011019
https://doi.org/10.1103/PhysRevX.4.011019
https://doi.org/10.1103/PhysRevX.4.011019
https://doi.org/10.1016/j.commatsci.2021.110938
https://doi.org/10.1016/j.commatsci.2021.110938
https://doi.org/10.1016/j.commatsci.2021.110938
https://doi.org/10.1016/j.commatsci.2021.110938
https://doi.org/10.1103/PhysRevMaterials.5.053801
https://doi.org/10.1103/PhysRevMaterials.5.053801
https://doi.org/10.1038/natrevmats.2017.53
https://doi.org/10.1038/natrevmats.2017.53
https://doi.org/10.34133/2020/6375171
https://doi.org/10.34133/2020/6375171
https://doi.org/10.1038/s41586-020-03072-z
https://doi.org/10.1038/s41586-020-03072-z
https://doi.org/10.1038/s41467-018-05761-w
https://doi.org/10.1038/s41467-018-05761-w
https://doi.org/10.1038/s41524-019-0177-0
https://doi.org/10.1021/jacs.7b09379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jacs.7b09379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1109/64.193054
https://doi.org/10.1109/64.193054
https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/
https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/
https://doi.org/10.1038/s41578-021-00282-3
https://doi.org/10.1038/s41578-021-00282-3
https://doi.org/10.1021/acsmacrolett.7b00228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsmacrolett.7b00228?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.8b02913?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00057a005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00062a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00062a008?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.commatsci.2020.110067
https://doi.org/10.1016/j.commatsci.2020.110067
https://doi.org/10.1103/PhysRevLett.101.235502
https://doi.org/10.1103/PhysRevLett.101.235502
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120381
https://doi.org/10.1016/j.ijheatmasstransfer.2020.120381
https://doi.org/10.1038/nnano.2010.27
https://doi.org/10.1038/nnano.2010.27
https://doi.org/10.1038/s41467-019-09697-7
https://doi.org/10.1038/s41467-019-09697-7
https://doi.org/10.1039/C5NR04995D
https://doi.org/10.1039/C5NR04995D
https://doi.org/10.1039/C9TA04097H
https://doi.org/10.1039/C9TA04097H
https://doi.org/10.1039/C9TA04097H
https://doi.org/10.1021/jz200866s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz200866s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz200866s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/science.aat9513
https://doi.org/10.1126/science.aat9513
https://doi.org/10.1038/s41467-020-20646-7
https://doi.org/10.1038/s41467-020-20646-7
https://doi.org/10.1038/nature09996
https://doi.org/10.1038/nature09996
https://doi.org/10.1021/nl8026795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/nl8026795?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.msea.2003.10.257
https://doi.org/10.1016/j.intermet.2010.05.014
https://doi.org/10.1016/j.pmatsci.2013.10.001
https://doi.org/10.1016/j.pmatsci.2013.10.001
https://doi.org/10.1073/pnas.1807817115
https://doi.org/10.1073/pnas.1807817115
https://doi.org/10.1016/j.matt.2021.04.014
https://doi.org/10.1016/j.actamat.2019.11.067
https://doi.org/10.1016/j.actamat.2019.11.067
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.1038/npjcompumats.2016.28
https://doi.org/10.1016/j.actamat.2019.03.012
https://doi.org/10.1016/j.actamat.2019.03.012
https://doi.org/10.1016/j.matdes.2021.109532
https://doi.org/10.1016/j.matdes.2021.109532
https://doi.org/10.1016/j.matdes.2021.109532
https://doi.org/10.1016/j.mtcomm.2022.103172
https://doi.org/10.1016/j.mtcomm.2022.103172
https://doi.org/10.1016/j.mtcomm.2022.103172
https://doi.org/10.1103/PhysRevX.3.041035
https://doi.org/10.1103/PhysRevX.3.041035
https://doi.org/10.1103/PhysRevX.3.041035
https://doi.org/10.1038/s41467-018-07160-7
https://doi.org/10.1038/s41467-018-07160-7
http://pubs.acs.org/journal/aelccp?ref=pdf
https://doi.org/10.1021/acsenergylett.2c01836?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(142)Wen, C.; Zhang, Y.;Wang, C.; Xue, D.; Bai, Y.; Antonov, S.; Dai,
L.; Lookman, T.; Su, Y. Machine Learning Assisted Design of High
Entropy Alloys with Desired Property. Acta Mater. 2019, 170, 109−
117.
(143) Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J.
High-Entropy Alloys as Catalysts for the CO2 and CO Reduction
Reactions. ACS Catal. 2020, 10, 2169−2176.
(144) Hart, G. L. W.; Mueller, T.; Toher, C.; Curtarolo, S. Machine
Learning for Alloys. Nature Rev. Mater. 2021, 6, 730−755.
(145) Cui, Y.; Li, M.; Hu, Y. Emerging Interface Materials for
Electronics Thermal Management: Experiments, Modeling, and New
Opportunities. J. Mater. Chem. C 2020, 8, 10568.
(146) Wang, G.; Zhang, L.; Zhang, J. A Review of Electrode Materials
for Electrochemical Supercapacitors. Chem. Soc. Rev. 2012, 41, 797−
828.
(147) Xiao, Y.; Chen, Q.; Hao, Q. Inverse Thermal Design of
Nanoporous Thin Films for Thermal Cloaking. Mater. Today Phys.
2021, 21, 100477.
(148) Yue, D.; Feng, Y.; Liu, X.; Yin, J.; Zhang, W.; Guo, H.; Su, B.;
Lei, Q. Prediction of Energy Storage Performance in Polymer
Composites Using High-Throughput Stochastic Breakdown Simu-
lation and Machine Learning. Adv. Sci. 2022, 9, 2105773.
(149) Shen, Z.-H.; Wang, J.-J.; Jiang, J.-Y.; Huang, S. X.; Lin, Y.-H.;
Nan, C.-W.; Chen, L.-Q.; Shen, Y. Phase-Field Modeling and Machine
Learning of Electric-Thermal-Mechanical Breakdown of Polymer-
Based Dielectrics. Nat. Commun. 2019, 10, 1843.
(150) Gu, G. X.; Chen, C.-T.; Richmond, D. J.; Buehler, M. J.
Bioinspired Hierarchical Composite Design Using Machine Learning:
Simulation, Additive Manufacturing, and Experiment. Mater. Horizons
2018, 5, 939−945.
(151) Zhao, Y.; Fu, C.; Fu, L.; Liu, Y.; Lu, Z.; Pu, X. Data-Driven
Machine Learning Models for Quick Prediction of Thermal Stability
Properties of OLED Materials. Mater. Today Chem. 2021, 22, 100625.
(152) Sifain, A. E.; Rice, B. M.; Yalkowsky, S. H.; Barnes, B. C.
Machine Learning Transition Temperatures from 2D Structure. J.
Molecular Graphics Modelling 2021, 105, 107848.
(153) Zhuo, Y.; Hariyani, S.; Armijo, E.; Abolade Lawson, Z.; Brgoch,
J. Evaluating Thermal Quenching Temperature in Eu3+-Substituted
Oxide Phosphors via Machine Learning. ACS Appl. Mater. Interfaces
2020, 12, 5244−5250.
(154) Balachandran, P. V.; Kowalski, B.; Sehirlioglu, A.; Lookman, T.
Experimental Search for High-Temperature Ferroelectric Perovskites
Guided by Two-Step Machine Learning. Nat. Commun. 2018, 9, 1668.
(155) Sosso, G. C.; Bernasconi, M. Harnessing Machine Learning
Potentials to Understand the Functional Properties of Phase-Change
Materials. MRS Bull. 2019, 44, 705−709.
(156) Slack, G. A. Nonmetallic Crystals with High Thermal
Conductivity. J. Phys. Chem. Solids 1973, 34, 321−335.
(157) Juneja, R.; Yumnam, G.; Satsangi, S.; Singh, A. K. Coupling the
High-Throughput Property Map to Machine Learning for Predicting
Lattice Thermal Conductivity. Chem. Mater. 2019, 31, 5145−5151.
(158) Jaafreh, R.; Kang, Y. S.; Hamad, K. Lattice Thermal
Conductivity: An Accelerated Discovery Guided by Machine Learning.
ACS Appl. Mater. Interfaces 2021, 13, 57204−57213.
(159) Wu, S.; Kondo, Y.; Kakimoto, M.; Yang, B.; Yamada, H.;
Kuwajima, I.; Lambard, G.; Hongo, K.; Xu, Y.; Shiomi, J.; Schick, C.;
Morikawa, J.; Yoshida, R. Machine-Learning-Assisted Discovery of
Polymers with High Thermal Conductivity Using a Molecular Design
Algorithm. npj Comput. Mater. 2019, 5, 66.
(160) Collins, C. M.; Daniels, L. M.; Gibson, Q.; Gaultois, M. W.;
Moran, M.; Feetham, R.; Pitcher, M. J.; Dyer, M. S.; Delacotte, C.;
Zanella, M.; Murray, C. A.; Glodan, G.; Pérez, O.; Pelloquin, D.;
Manning, T. D.; Alaria, J.; Darling, G. R.; Claridge, J. B.; Rosseinsky, M.
J. Discovery of a Low Thermal Conductivity Oxide Guided by Probe
Structure Prediction and Machine Learning. Angew. Chem., Int. Ed.
2021, 60, 16457−16465.
(161) Visaria, D.; Jain, A. Machine-Learning-Assisted Space-Trans-
formation Accelerates Discovery of High Thermal Conductivity Alloys.
Appl. Phys. Lett. 2020, 117, 202107.

(162) Chakraborty, P.; Liu, Y.;Ma, T.; Guo, X.; Cao, L.; Hu, R.;Wang,
Y. Quenching Thermal Transport in Aperiodic Superlattices: A
Molecular Dynamics and Machine Learning Study. ACS Appl. Mater.
Interfaces 2020, 12, 8795−8804.
(163) Roy Chowdhury, P.; Reynolds, C.; Garrett, A.; Feng, T.; Adiga,
S. P.; Ruan, X. Machine Learning Maximized Anderson Localization of
Phonons in Aperiodic Superlattices. Nano Energy 2020, 69, 104428.
(164) Hashemi, M. S.; Safdari, M.; Sheidaei, A. A Supervised Machine
Learning Approach for Accelerating the Design of Particulate
Composites: Application to Thermal Conductivity. Comput. Mater.
Sci. 2021, 197, 110664.
(165) Wan, J.; Jiang, J.-W.; Park, H. S. Machine Learning-Based
Design of Porous Graphene with LowThermal Conductivity. Carbon N
Y 2020, 157, 262−269.
(166) Sosso, G. C.; Deringer, V. L.; Elliott, S. R.; Csányi, G.
Understanding the Thermal Properties of Amorphous Solids Using
Machine-Learning-Based Interatomic Potentials. Mol. Simul. 2018, 44,
866−880.
(167) Zhang, Y.; Lunghi, A.; Sanvito, S. Pushing the Limits of
Atomistic Simulations towards Ultra-High Temperature: A Machine-
Learning Force Field for ZrB2. Acta Mater. 2020, 186, 467−474.
(168) Verdi, C.; Karsai, F.; Liu, P.; Jinnouchi, R.; Kresse, G. Thermal
Transport and Phase Transitions of Zirconia by On-the-Fly Machine-
Learned Interatomic Potentials. npj Comput. Mater. 2021, 7, 156.
(169) Swartz, E. T.; Pohl, R. O. Thermal Boundary Resistance. Rev.

Mod. Phys. 1989, 61, 605.
(170) Rego, L. G. C.; Kirczenow, G. Quantized Thermal Conductance
of Dielectric Quantum Wires. Phys. Rev. Lett. 1998, 81, 232−235.
(171) Wu, J.; Zhou, E.; Huang, A.; Qin, G. Deep-Potential Driven
Multiscale Simulation of Gallium Nitride Devices on Boron Arsenide
Cooling Substrates. arXiv Preprint 2022, arXiv:2201.00516.
(172) Fujii, S.; Seko, A. Structure and Lattice Thermal Conductivity of
Grain Boundaries in Silicon by Using Machine Learning Potential and
Molecular Dynamics. Comput. Mater. Sci. 2022, 204, 111137.
(173) Vu, A. T.; Gulati, S.; Vogel, P.-A.; Grunwald, T.; Bergs, T.
Machine Learning-Based Predictive Modeling of Contact Heat
Transfer. Int. J. Heat Mass Transfer 2021, 174, 121300.
(174) Ju, S.; Shiga, T.; Feng, L.; Hou, Z.; Tsuda, K.; Shiomi, J.
Designing Nanostructures for Phonon Transport via Bayesian
Optimization. Phys. Rev. X 2017, 7, 021024.
(175) Guo, Y.; Li, G.; Mabuchi, T.; Surblys, D.; Ohara, T.; Tokumasu,
T. Prediction of Nanoscale Thermal Transport and Adsorption of
Liquid Containing Surfactant at Solid-Liquid Interface via Deep
Learning. J. Colloid Interface Sci. 2022, 613, 587−596.
(176) Jin, S.; Zhang, Z.; Guo, Y.; Chen, J.; Nomura, M.; Volz, S.
Optimization of Interfacial Thermal Transport in Si/Ge Hetero-
structure Driven by Machine Learning. Int. J. Heat Mass Transfer 2022,
182, 122014.
(177) Chen, H.-T.; Taylor, A. J.; Yu, N. A Review of Metasurfaces:
Physics and Applications. Rep. Prog. Phys. 2016, 79, 076401.
(178) Shaltout, A. M.; Shalaev, V. M.; Brongersma, M. L.
Spatiotemporal Light Control with Active Metasurfaces. Science 2019,
364, No. eaat3100.
(179) Peurifoy, J.; Shen, Y.; Jing, L.; Yang, Y.; Cano-Renteria, F.;
DeLacy, B. G.; Joannopoulos, J. D.; Tegmark, M.; Soljacǐc,́ M.
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